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advisor). Essays on Asset Allocation Optimization Problems 
Under Uncertainty. Rio de Janeiro, 2014. 117p. PhD Thesis – 
Departamento de Engenharia Elétrica, Pontifícia Universidade 
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In this thesis we provide two different approaches for determining 

optimal asset allocation portfolios under uncertainty.  We  show how 

uncertainty about expected returns distribution can be incorporated  in 

asset allocation decisions by using the following alternative  frameworks:  

(1) an extension of the Bayesian methodology  proposed by Black and 

Litterman through a dynamic trading strategy built on a learning model 

based on fundamental analysis; (2) an adaptive dynamic approach,  based 

on robust optimization techniques. This latter approach is presented in two 

different specifications: an empirical robust loss model and a covariance-

based robust loss model based on Bertsimas and Sim approach to model 

uncertainty sets. To evaluate the importance of the proposed  models for 

distribution  uncertainty,  the extent  of changes in the prior optimal asset 

allocations of investors who embody uncertainty  in their portfolio is 

examined. The key findings are: (a) it is possible to achieve optimal 

portfolios less influenced  by estimation errors; (b) portfolio strategies of 

such investors generate statistically higher returns with controlled losses 

when compared  to the classical mean-variance optimized portfolios and 

selected benchmarks. 
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Nesta tese buscamos fornecer duas diferentes abordagens para a 

otimização de carteiras de ativos sob incerteza. Demonstramos como a 

incerteza acerca da distribuição dos retornos esperados pode ser 

incorporada nas decisões de alocação de ativos, utilizando as seguintes 

ferramentas: (1) uma extensão da metodologia Bayesiana proposta por 

Black e Litterman através de uma estratégia de negociação dinâmica 

construída sobre um modelo de aprendizagem com base na análise 

fundamentalista, (2 ) uma abordagem adaptativa baseada em técnicas de 

otimização robusta. Esta última abordagem é apresentada em duas 

diferentes especificações: uma modelagem robusta com base em uma 

análise puramente empírica e uma extensão da modelagem robusta 

proposta por Bertsimas e Sim em 2004. Para avaliar a importância dos 

modelos propostos no tratamento da incerteza na distribuição dos 

retornos examinamos a extensão das mudanças nas carteiras ótimas 

geradas. As principais conclusões são: (a ) é possível obter carteiras 

ótimas menos influenciadas por erros de estimação, ( b ) tais carteiras são 

capazes de gerar retornos estatisticamente superiores com perdas bem 

controladas, quando comparadas com carteiras ótimas de Markowitz e 

índices de referência selecionados . 
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otimização robusta. 
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1
Introduction

1.1 Modern Portfolio Theory and its Extensions

In 1952 Harry Markowitz published the article “Portfolio Selection” which
can be considered as the beginning of modern portfolio theory. Portfolio selection
is the problem of allocating capital over a number of available assets in order to
maximize the return on the investment while minimizing its risk. Since asset future
returns are not known at the time of the investment decision, the problem is one
of decision-making under uncertainty. Thereby, decisions taken today can only
be evaluated at a future time, once the uncertainty regarding the asset returns is
revealed.

We can assume that future assets’ returns are random variables, which we
denote by Ri, ∀i ∈ {1, ..., n}.1 A portfolio is denoted by x = (x1, ..., xn) where
each xi corresponds to the fraction of the capital invested in asset i. The values
xi,∀i ∈ {1, ..., n} are called “portfolio weights”, which are the required investment
decisions. To represent a portfolio, the weights must satisfy some specified con-
straints that form a set X of feasible decision vectors. A simple way to define it is
by the requirement that the weights are non negative and sum to 1.2 Formally, we
define this set of feasible decision vectors as

X = {(x1, ..., xn) |
n∑
i=1

xi = 1, xi ≥ 0, ∀i = 1, ..., n} (1-1)

As with the assets’ returns, the return of a portfolio is also a random variable ex-
pressed by

Rp =
n∑
i=1

xiRi (1-2)

One important issue arises when the investor must choose among payoff dis-
tributions. In attempting to construct a general framework for the decision-making
analysis under uncertainty, researchers have sought to establish reasonable criteria

1 Hereafter, we will assume the notation Ri for arithmetic returns and ri for geometric (logarith-
mic) returns.

2 Which means the investor is fully allocated and that short selling is not allowed.
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1. INTRODUCTION 10

for the selection of one prospect over another. The first step is to define a prefer-
ence criterion among random variables and then the investment decisions are taken
by solving optimization problems.

Among current research, there are well established approaches that cover
mean-risk models and expected utility maximization. In a portfolio context, risk
is usually measured by means of a dispersion measure, such as the variance or stan-
dard deviation of returns around their expected value.3 The result of Markowitz
portfolio optimization is thus a parabolic efficient frontier, indicating the combina-
tions of assets with the highest expected return given a certain level of risk. Portfolio
selection model as proposed by Markowitz (1952) is based on the assumption that
investment decisions depend only on the expectation value and covariance structure
of asset returns.

However, estimation procedures entail estimation errors which in turn affect
the solution of the portfolio selection problem, often resulting in extreme portfolio
weights (extreme short selling and large leveraged long positions), unbalanced as-
set allocations or lack of diversification (see Black and Litterman (1992); Goyal and
Welch (1992); Chopra and Ziemba (1993); Bera and Park (2008)). Therefore, al-
though Markowitz framework seems to be very reasonable in theory, it continues to
encounter skepticism among practitioners. The lack of confidence of many invest-
ment practitioners to mean-variance optimization technology for portfolio selection
has motivated the search for new tools to improve it. In this context we present the
following works within this thesis developed in the area of portfolio optimization
under uncertainty.

1.2 Objective

In real asset allocation problems input data are usually not known exactly.
Information used to model a problem is often noisy, incomplete or even incorrect
and under these uncertainties, an “optimal" solution can easily be “sub-optimal"
or unattainable. In this context, the objective of this thesis is to present different
essays in portfolio optimization under uncertainty. We show how uncertainty about
expected returns distribution can be incorporated in asset allocation decisions using
the following alternative frameworks:

3 Also known as volatility.
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1. INTRODUCTION 11

• an extension of the Black and Litterman (BL) model, through a dynamic trad-
ing strategy built on a learning model based on fundamental analysis;

• an adaptive dynamic approach, based on robust optimization techniques and
polyhedral uncertainty sets.

Accomplishing this allow us to present practical implementations and through
this provide a solid intuitive explanation for the workings of the models. In order to
limit our scope, we work in discrete time and continually keep our main focus on
an intuitive understanding of the asset allocation problem.

1.3 Main Contributions

Our first paper to be presented in Chapter 2 is an extension of the Black-
Litterman (BL) model with two major contributions:

• Our first contribution is to present how observed price-earnings ratio and re-
turns can be used to determine a priori estimation of asset expected returns
and how this can be integrated into the BL model, regarding investors with
different risk profiles.

• Our second contribution is to extend the BL framework to an adaptive opti-
mization model to dynamically update conditional probability distribution of
asset returns and mitigate asset allocation instability due to estimation errors.

In the following two papers to be presented in Chapters 3 and 4 respectively,
we provide an alternative deterministic methodology to construct uncertainty sets
within the framework of robust optimization for linear optimization problems with
uncertain parameters. Our approach relies on decision-maker risk tolerance to con-
struct data-driven adaptive polyhedral uncertainty sets from joint dynamics of asset
returns. Further, we propose a learning specification algorithm to forecast future
returns. This contribution is relevant for it:

• Does not impose any parametric structure to the prediction model. It relies
solely on signals extracted from data. The optimal signal is the result of an
optimized convex combination of representative signals modeled from adap-
tive indicators that may vary considering the existing dynamic conditional
correlations between assets’ returns;
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PUC-Rio - Certificação Digital Nº 1012094/CA



1. INTRODUCTION 12

• Considers that optimal portfolio losses are modeled using a robust adaptive
approach. Its potential loss is limited by the worst case scenario inside pre-
defined adaptive uncertainty sets. We study two cases where the uncertainty
sets are defined as:

– adaptive polyhedral sets described by a list of its vertices, which are set
as past assets’ returns obtained over moving windows with a length of
J-days. This is a purely empirical method to construct an uncertainty set
as its information set is limited to past returns;

– adaptive polyhedral sets described by a historical covariance structure
of returns calculated over moving windows. Under this specification,
no more than a predetermined number Γ of assets could change simul-
taneously from a given dynamic estimated nominal value. This method
is based on the approach introduced by Bertsimas and Sim (2004) and
it is efficient to adjust the robustness of the problem against the level of
the conservatism of the solution;

• Incorporates both return predictability and transaction costs, covering all fee
structures typically observed on the market to give a more rigorous result for
practical purposes. Using financial data from Brazilian asset classes (consid-
ering here equities, bonds, currency, commodity and cash), our results suggest
that these combined techniques present consistent performance while prevent
huge financial losses, especially during crisis periods.

1.4 Outline

The essays in this thesis share the common theme of asset allocation strategies
under uncertainty. Each of these examines a distinct, well defined research problem
related to the main topic and occupies a separate chapter. In addition, the thesis
contains sections on literature review, methodology and case study, which apply to
each of these problems within this doctoral study. The remainder of this thesis is
organized as follows. Chapter 2 presents an extension of the Black & Litterman
model with a dynamic trading strategy built on a learning model based on funda-
mental analysis, regarding investors with different risk profiles. Chapter 3 provides
a robust portfolio optimization problem based on data-driven adaptive polyhedral
uncertainty sets. Chapter 4 provides a robust portfolio optimization problem based
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1. INTRODUCTION 13

on Bertsimas and Sim approach to model parameter uncertainty. In Chapter 5 we
conclude by summarizing the main results of this thesis in more detail. All the
works cited in the thesis and other relevant documents are presented in the Bibliog-
raphy. The Appendix is included at the end of this document.

Throughout this thesis we will use bold-faced capital letters to indicate matri-
ces, bold-faced lowercase letters to indicate vectors and ordinary letters to indicate
scalars. The vector ι refers to the vector of all ones, 0 is the vector of all zeros, and
I is an identity matrix.
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2
Paper 1: A Dynamic Asset Allocation Model
based on the Black-Litterman Approach

In this work we propose a dynamic asset allocation strategy based on the
Black-Litterman model. We present how observed price-earnings ratio and returns
can be used to determine a priori estimation of assets’ expected returns and how this
method can be integrated into the Black-Litterman model, regarding investors with
different risk profiles. The provided approach dynamically updates the conditional
probability distribution of asset returns and mitigates asset allocation instability due
to estimation errors. We perform a case study to illustrate that the resulting optimal
portfolios outperform traditional mean-variance portfolios.

2.1 Introduction

The portfolio selection model as proposed by Markowitz (1952) is based on
the assumption that investment decisions depend only on the expectation value and
covariance structure of asset returns. In practice, the sample mean and covariance
have been used to implement these portfolios (see Elton and Gruber (1973); Jobson
and Korkie (1981b); Jones et al. (1985)).1 However, estimation procedures entail
estimation errors which in turn affect the solution of the portfolio selection prob-
lem, often resulting in extreme portfolio weights (extreme short selling and large
leveraged long positions), unbalanced asset allocations or lack of diversification
and poor out-of-sample performance (see Black and Litterman (1992); Goyal and
Welch (1992); Chopra and Ziemba (1993); Siege and Woodgate (2007); Bera and
Park (2008)).

Evidence also suggests that optimal portfolios tend to amplify large estima-
tion errors in certain directions.2 Jobson and Korkie (1981a); Michaud (1989); Best

1 Furthermore, it leaves little or no room for an investor to use his or her own views on the market
when choosing portfolio weights, which would mean there is no reason for an investor to analyze
the fundamentals of a company before buying its assets (stocks or bonds).

2 In fact, if the variance of an asset is significantly underestimated, the optimized portfolio will
assign a large weight to it. Similarly, a large weight will be assigned if the mean return of an
asset appears to be large as a result of being significantly overestimated. Thus, the risk of the
estimated optimal portfolio is typically under-predicted and its return is over-predicted (see Kallberg
and Ziemba (1981, 1984); Karoui (2013, 2010)).
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and Grauer (1991); Chopra and Ziemba (1993); Britten-Jones (1999), among others,
argue that hypersensitivity of the optimal weights in the portfolio follows from the
error-maximizing result of mean-variance optimization. Such observations indicate
that those inputs need to be estimated very accurately.

Several attempts have been made to reduce the impact of estimation errors in
the optimal portfolio composition (see Frost and Savarino (1986, 1988); Michaud
(1989); Best and Grauer (1991); Chopra and Ziemba (1993); DeMiguel et al. (2009)).
Techniques proposed include introducing weight constraints, Bayesian shrinkage
and portfolio re-sampling, to name just a few (see Basak et al. (2009); Jorion (1986);
Black and Litterman (1992); Michaud (1989)).3 A more recent study by Lim et al.
(2012) also proposes an interesting framework of relative regret to formulate the
portfolio problem.4

The integration of quantitative asset allocation models with judgment from
portfolio managers and analysts was addressed by Fisher Black and Robert Litter-
man in the early 1990s through a new mean-variance model based on an Bayesian
analytical framework, which could provide more intuitive portfolios by computing
a better estimate for the assets’ expected returns (see Black and Litterman (1992)).
They adopted a practitioner’s perspective on model building by considering that the
model mathematics should be tractable, the inputs should be intuitive to investment
managers and the optimized portfolio should reflect investors’ views. Their specifi-
cation considered two different sources of information on assets’ expected returns,
which are combined in one simple formula. The first source of information is related
to subjective views held by investment managers.5 The second source of informa-
tion is obtained quantitatively, from the market implied equilibrium returns. The
Black-Litterman (BL) model allows the investor to start with a prior belief about
expected returns (subjective views) and to update this prior distribution with market
empirical data (model-based estimates, such as CAPM-implied equilibrium returns
as an approximation6).

3 Also, it is well known that it is more difficult to estimate mean than covariance of asset returns
(see Merton (1980)) and also that errors in estimates of mean have a larger impact on portfolio
weights than errors in estimates of covariance (see Jagannathan and Ma (2003)). In order to address
this latter problem, recent studies have focused on optimization which relies solely on estimates
of covariance and therefore are less vulnerable to estimation errors (see Litterman (1998); Pollak
(2012)).

4 Relative regret evaluates a portfolio by comparing its return to a family of benchmarks.
5 As those views need not be an exact value of the expected return of an asset, but rather an

expression of relative expected returns, this formulation is easier for investors to apply.
6 Since Black and Litterman (1992) first presented their model, the CAPM has been rejected

empirically (Fama and French (1992, 1993)) and several asset pricing models, using a multi-factor
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Intuitively, as the posterior expected returns are a combination of the prior in-
vestor views with the market equilibrium returns, in the absence of subjective views,
the investor should stick to the market via equilibrium views. On the other hand,
if the investor has strong views on some asset returns, the portfolio should be tilted
to reflect these views combined with the market equilibrium portfolio. Because the
market view is always considered, it is less likely to run into unstable or corner so-
lutions. In case the investor holds strong views that dominate the market view, the
model allows the results to be significantly adjusted towards these views. Computa-
tional experience has shown that the portfolios constructed by this method are more
stable and better diversified than those constructed from the conventional mean-
variance approach (see Bevan and Winkelmann (1998); Herold (2003); Jones et al.
(2007); Becker and Gutler (2010)). Consequently, the BL model has been shown to
be appealing among practitioners. A host of US investment firms (Goldman Sachs,
JP Morgan, Prudential Financial, BlackRock, Zephyr Analytics) as well as interna-
tional ones (Vinci Partners, Titan Capital) publishes portfolio recommendations for
investor allocations based on the BL model.

The BL model, however does have its shortcomings, as noted by Bertsimas
et al. (2012). First, it allows investors to specify their views only on assets’ expected
returns, but not on their volatility or correlation. Second, it is constructed on a
mean-variance approach. Later, the work of Artzner et al. (1999); Rockafellar and
Uryasev (2000); Alexander and Baptista (2004) present other risk measures, such
as Conditional Value-at-Risk (CVaR) that could be more suitable for measuring risk
(see also Browne (2000); Simaan (1997)). Subsequent research has tried to address
these inadequacies and further advanced the understanding and implementation of
BL framework.

Several authors have presented encouraging results when combining equilib-
rium returns with trading strategies using the BL framework. They provide ev-
idence that the exhibited optimal portfolios could achieve significant outperfor-
mances compared to the classic MV models, according to several important risk-
adjusted measures7 (see Fabozzi et al. (2006); Beach and Orlov (2007); Cheung
(2013); Jones et al. (2007); Becker and Gutler (2010)). We mention here a few pa-
pers and refer the reader to Walters (2010, 2013) and the references therein for a

approach have been proposed to update the investor prior views. Later, Bartholdy and Peare (2005)
compare the performance of these two models for estimates of asset returns and conclude that both
models provide similar results.

7 Such as alpha, Sharpe ratio, Treynor ratio, etc.
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more complete survey. Herold (2003) describes an approach in which the BL pro-
cedure can be employed with qualitative analysts’ forecasts. Fabozzi et al. (2006)
incorporate a cross sectional momentum strategy8 to the BL framework, in which
they combine this strategy with market equilibrium to rebalance the portfolio on
a monthly basis (see also the work of Koijen et al. (2009) for an interesting ap-
plication of momentum strategies in asset allocation decisions). Cheung (2013)
presents a model that explicitly seeks forward-looking factor views and smoothly
blends them in the BL framework to deliver robust allocation to securities. Jones
et al. (2007) generate the views to be input into the BL model on the basis of a
factor model, in which the view confidences are determined from historical return
covariance. Shin et al. (2013) propose the joint use of the views of experts with
quantitative data for input in the BL model.

In this work we want to quantify the improvement in portfolio performance
of an informed investor who learns from fundamental analysis over an investor who
only learns from observed market prices. This extension allows us to examine how
the use of different neutral models for learning from prices can affect portfolio per-
formance and establish a framework to test the proposed dynamic learning model
(based on fundamental analysis) for their informational content about expected re-
turns.

The remainder of this chapter is organized as follows: Section 2.2 provides
a step-by-step derivation of the BL model and extends the model to a dynamic
framework; Section 2.3 discusses the proposed trading strategy based on the BL
model; Section 2.4 presents a case study applied to the Brazilian market; Section
2.5 concludes this chapter and discusses future research.

2.2 Revisiting Black-Litterman Asset Allocation Model

In this section, we revisit the original Black-Litterman model. For the com-
plete study, see Black and Litterman (1992); He and Litterman (1999). One key
contribution of the BL asset allocation model is to assume that the asset’s expected
return is a random variable itself, instead of a given fixed number as is the case in
the Markowitz mean-variance model. The specification that follows relies on this

8 The idea of a momentum strategy is to buy securities that have performed well and sell the
securities that have performed poorly, in the hope that this trend will continue.
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assumption.9

In this paper we will follow the BL approach proposed by Satchell and Scowcroft
(2000) and Christodoulakis and Cass (2002), which is consistent with the defini-
tion of the Bayes Theorem. Let us assume that there are n assets in the market,
which may include equities, bonds, currencies, etc. Unlike in classical statistics
in which the means are considered deterministic (though unobserved), in the BL
framework the actual mean in unknown and stochastic, although the covariance ma-
trix of returns is considered fixed and well defined. The model applies the “known
covariance unknown mean” Bayesian solution to statistical inference to generate
the assets’ expected returns suitable for use in the mean-variance Markowitz-type
portfolio allocation. In essence, the approach hereafter consists of generating one-
step-ahead posterior returns on the assets by means of a precision-matrix-weighted
combination of investors’ prior views of their future returns with the distribution of
their implied excess returns obtained by an equilibrium model (or reverse optimiza-
tion from the historic covariance and the benchmark index portfolio of securities).
Considering that r ∈ Rn is the vector of asset returns with an unknown stochas-
tic mean µ ∈ Rn and a well defined covariance matrix Σ ∈ Rn×n (in particular,
non-singular), we have

r ∼ N(µ,Σ) (2-1)

2.2.1 Investor Prior Views

The first step in the BL approach is to model the investor views. The BL
model considers views on expectations. In the normal market (2-1), this corre-
sponds to statements on the variable µ. Furthermore, BL focuses on linear views10

and allows the investor to express both absolute and relative11 views. In addition,
considering (2-1), the investor must assign levels of confidence to each asset view
in the form of confidence intervals. Under the normality assumption, this level of
confidence is usually expressed as the standard deviation around the expected return
of the view.

This specification has two attractive features concerning the investors’ views.
The first is to allow investors to express relative views which cannot be expressed
in traditional mean-variance portfolio optimization and seems easier for investors

9 As the mean returns are not observable, one can only infer their probability distribution.
10 That is, linear combinations of the securities expected returns.
11 Which corresponds to the following statement: “The investor believes the security A will out-

perform the security B by α%”.
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to apply. The second is related to the impact the view will have in the optimal
portfolio. When assuming different levels of confidence on the views and because
views may be incorrect, the result shows that the confidence level must affect the
influence of a particular view in the process. In this sequel we present the model to
incorporate the investors’ views in the portfolio problem.

Let k be the total number of views, where k ≤ n, P be a k×n matrix of view
structure parameters, where each row represents a specific view over the n assets
and let q be a k-vector of the corresponding expected excess returns for each view.
The views can be expressed by

q = Pµ+ ε (2-2)

where q ∈ Rk is known, P ∈ Rk×n is known, µ is the (unknown but required) prior
vector of expected return estimates, ε is the unobservable vector of view estimation
errors that is normally distributed as follows

ε ∼ N(0,Ω) (2-3)

where Ω ∈ Rk×k is a diagonal covariance matrix of view estimation errors, which,
for simplicity, are considered independent across views.12 Therefore we can param-
eterize the prior distribution of expected returns as

f(Pµ) ∼ N(q,Ω) (2-4)

2.2.2 Market Equilibrium Returns

The Black-Litterman model basic assumption is that the expected return of
a security should be consistent with market equilibrium unless the investor has a
specific view on it. The authors thus propose to extract market implied expected
returns using the CAPM equilibrium model and define the asset’s equilibrium risk
premium as πi. Assuming that all investors share the same view and at that moment
there is only one optimal portfolio, this portfolio is the one that contains all assets
proportional to their capitalization weights, that is the market portfolio xm. The
equilibrium risk premiums are such that the demand for these assets exactly equals
the outstanding supply (Black (1989)). Assuming the validity of CAPM, it follows

12 The parameters q and Ω are called the hyper-parameters. They parameterize the prior probabil-
ity density function and are specified by the investor.
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that
E(ri)− rfree = βi(E(rm)− rfree),∀i = 1, 2, ..., n (2-5)

where E(ri), E(rm) and rfree correspond respectively to the expected return on asset
i, the expected return on the market portfolio and the risk-free rate.13 Moreover we
can express βi as

βi =
cov(ri, rm)

σ2
m

,∀i = 1, 2, ..., n (2-6)

where σ2
m is the variance of the market portfolio. Let us denote the return on the

market portfolio by

rm =
n∑
j=1

xmjrj (2-7)

where xm = (xm1, xm2, ..., xmn)′ is the percentage of each asset’s market capital-
ization14 in a universe of n securities. We can express the asset i equilibrium risk
premium as πi = E(ri)− rfree and it becomes

πi = βi(E(rm)− rfree) (2-8)

=
cov(ri, rm)

σ2
m

(E(rm)− rfree) (2-9)

=
E(rm)− rfree

σ2
m

n∑
j=1

cov(ri, rj)xmj

which can be expressed in matrix form as15

π = δΣxm (2-11)

Let us define the market implied risk premium vector as π = (πi, ..., πn)′ and
the average global risk aversion parameter as δ =

E(rm)−rfree
σ2
m

.16 We assume that xm

13 Where rfree ∈ R+.
14 Or benchmark weights.
15 The expected returns estimated by the market might also be understood as the result of the

optimality conditions of the following Markowitz portfolio problem:

max
x
{x′µ+ (1− x′ι)rfree −

δ

2
x′Σx} (2-10)

assuming that all investors solve this problem for some specific level of risk and that x corresponds
to the market portfolio xm.

16 And also known as the market price of risk. This factor (which is a positive scalar) is based on
the formulas in Black (1989).
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is a fixed amount and express the covariance matrix of asset returns Σ ∈ Rn×n by

Σ =


cov(r1, r1) · · · cov(r1, rn)

... . . . ...
cov(rn, r1) · · · cov(rn, rn)

 (2-12)

These conditions collectively form the CAPM (see Sharpe (1964) for proofs
of these results).

The expected returns µ are considered to be random variables themselves
(as the true expected returns µ of the securities are unknown) with a probability
distribution centered at the equilibrium returns and variance proportional to the co-
variance matrix of the returns. They are assumed to be related to π as

π = µ+ ε (2-13)

where ε ∼ N(0, τΣ). Because the market is not necessarily in equilibrium, the
assessment π can suffer from errors. The parameter τ is used to specify the relation
between the distribution of the asset returns and the distribution of the asset return
means. The BL model assumes that the variance in the mean of the return is smaller
than the variance in the return itself and therefore τ is an scalar between (0, 1),
typically close to zero.17Given that the market portfolio is on the efficient frontier
(as a consequence of the CAPM) an investor will hold a portfolio consisting of the
market portfolio and a risk-free instrument earning the risk-free rate.

The likelihood function of the implied returns from the equilibrium model is
thus given by

f(π|µ) ∼ N(µ, τΣ) (2-14)

where µ is the unobservable mean and π and Σ are estimated to encompass all the
equilibrium information contained in the distribution.

2.2.3 Bayesian Updating Approach

At this point, the BL model applies Bayes theorem to combine the prior dis-
tribution and the likelihood function to create a posterior distribution for the asset’s

17 In fact, it seems reasonable that the elements of τΣ should be smaller than those of Σ in a
market demonstrating some level of semi-strong form of market efficiency (see Fama (1965)). One
can think about τΣ as her confidence in estimating the equilibrium expected returns, in which a
small value for τ implies a high confidence in the equilibrium estimate.
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expected returns µ. It is more natural to think of π as the input of the quantitative
investor because it depends upon the data. That was the reason why we defined its
distribution as the likelihood function (or conditional distribution) and the conjugate
prior distribution was represented by the investor’s particular views.

It is possible to write the posterior expected return distribution, applying
Bayes rule, as

f(µ|π) =
f(π|µ)f(µ)

f(π)
(2-15)

where f(π|µ) is the conditional probability density function (pdf) of the data equi-
librium return, upon the investor’s common beliefs, f(µ) is known as the prior pdf
that expresses the investor’s views and f(π) represents the marginal pdf of equi-
librium returns, a constant that will be absorbed into the integrating constant of
f(µ|π).

By substituting the distributions (2-4) and (2-14) in (2-15) we obtain the pos-
terior distribution

f(µ|π) ∼ N(µBL,Σ
µ
BL) (2-16)

with the following expression for the posterior mean

µBL =
[

(τΣ)−1 + P′Ω−1P
]−1 [

(τΣ)−1π + P′Ω−1q
]

(2-17)

and for the covariance matrix around the mean

Σµ
BL =

[
(τΣ)−1 + P′Ω−1P

]−1

(2-18)

A detailed proof is provided in the Appendix.
The posterior covariance matrix is essentially the uncertainty in the posterior

mean estimate about the actual mean and not the covariance of the returns itself. To
compute the posterior covariance of returns, it is necessary to add 18 the covariance
of the estimate about the mean to the variance of the distribution about the estimate
as

ΣBL ≡ Σµ
BL + Σ (2-19)

where Σ is the known covariance of returns and Σµ
BL is the covariance of the pos-

terior distribution about the true mean.
18 Given that the estimate error of the mean return is independent of the covariance of the returns

around the true mean.
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Given the meanµBL and the covariance matrix ΣBL, the optimal portfolio can
be calculated by a standard mean-variance optimization method. Assuming a risk
aversion parameter δ and ι being a n-vector of all ones, the general maximization
problem under the no short selling constraint can be written as

max
x∈Rn

x′µBL −
δ

2
x′ΣBLx

s.t.

x′ι = 1

xi ≥ 0,∀i

(2-20)

2.2.4 A Dynamic Framework for BL Model

Our development so far has considered the restrictive assumption that in-
vestors have a single-period horizon. However, more realistically, one might con-
sider the case where investors can make decisions dynamically over time.19 Allow-
ing investors to rebalance their portfolios inter-temporally can be observed as an ex-
pansion of their opportunity sets, thus making more interesting portfolio strategies
available relative to static frameworks. However, to induce optimality on rebalanc-
ing portfolios it is essential that investors regard their investment opportunity set
as time-varying and thereby potentially predictable. To analyze the implications of
such investment dynamics we propose a framework that allows for a tractable solu-
tion and simple empirical implementation of the technology proposed by Black and
Litterman (BL). We will thus extend the BL model specification to a time-varying
model, both in the investor views specification and the market equilibrium model.

The investor opportunity set is commonly defined to be the riskless rate of
return and the investor probability beliefs about future risky asset returns. Most
switching strategies currently in practice adopt some deterministic policy to shift
allocation from risky assets to riskless assets.20 In this paper, we model and test
a dynamic asset allocation strategy that uses past information about risky assets to
determine the direction and extent of asset class switching (among risky and riskless

19 The dynamic investment problem for individuals has been the subject of a huge volume of
financial theory, starting, in its modern form, with Merton (1969, 1971). They solved the theoretical
problem of consumption-portfolio choice in a continuous time context where security prices follow
diffusion processes.

20 Ludvik (1994) suggests to increase allocation in safer assets when the accumulated fund is ahead
of some “target”. Arts and Vigna (2003) propose a criterion which considers actual realizations of
returns on risky assets.
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assets).
We extend the basic specification outlined by the BL framework to a more

general setting of dynamic asset allocation. For that we need to define the con-
ditional distribution of investors’ views with dynamic parameters. Let Pt be the
dynamic matrix of views, Ωt the conditional covariance matrix of views and qt

the dynamic vector of the expected excess returns for each view. To construct the
implied equilibrium returns distribution we need also to define πt as the dynamic
implied risk premiums, Σt as the conditional historical covariance of returns and τt
as the parameter to scale the conditional covariance of returns. We can illustrate the
relation between both sources of information in the following dynamic framework
for the updated mean and covariance matrix

µBL,t =
[

(τtΣt)
−1 + P′tΩ

−1
t Pt

]−1 [
(τtΣt)

−1πt + P′tΩ
−1
t qt

]

ΣBL,t =
[

(τtΣt)
−1 + P′tΩ

−1
t Pt

]−1

+ Σt

(2-21)

2.3 Trading Strategy based on the Black-Litterman Model (TS-
BL)

The proposed trading strategy obtains the optimal asset allocation weights
by solving a MV optimization problem. Despite using the same formulation of
the MV model, we do not use historical estimates for the asset return distribution.
Instead, we use a conditional (dynamically updated) estimate of the covariance ma-
trix and a (blended) posterior distribution for average asset returns, obtained by the
combination of estimated views and equilibrium asset returns. We build the views
distribution (Pt,qt,Ωt) by emulating the decision process of fundamental analysts
through a (PE-based) dynamic regression model21 and we extract equilibrium dis-
tribution (πt,Σt, τt) from basis portfolios (for each risk profile) resulting from a
target volatility system.

21 Hereafter let us denote this view model as the “learning model based on fundamental analysis”.
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Fig. 2.1: TS-BL workflow.
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2.3.1 Learning Model based on Fundamental Analysis

One of the most debated questions in recent financial research is whether asset
returns or risk premium are predictable.22 This question is significant for portfolio
choice. Economists have different views on whether asset returns are predictable
as it is known that given independent identically distributed (iid) returns, investors
do not obtain any updated knowledge about the return distribution moments over
time. The assumption of iid returns is refuted by empirical literature (see Fama
and French (1989); Campbell et al. (1997)) even though there is a relevant ongoing
discussion regarding return dynamics (see Cavanagh et al. (1995); Campbell and
Cochrane (1999)). Goyal and Welch (2008), among others, argue that the existing
empirical models of predicting asset returns do not outperform the simple iid model
both in sample and out of sample, and thus, are not useful for investment advice.
On the other hand, practitioners and researchers alike have identified several ways
to successfully predict future security returns based on historical returns and fun-
damental data (see Nicholson (1960); Jegadeesh and Titman (1993); Rouwenhorst
(1998); Fabozzi et al. (2006); Cochrane (2008)). Following several papers in the

22 See for example, the July 2008 issue of the Review of Financial Studies.
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portfolio choice literature, we will consider that asset returns exhibit some sort of
predictability. We assume that there exists a simple environment in which the in-
vestor is faced with an investment opportunity set constituted by a risky asset and
a risk-free asset. The investor must decide whether to allocate his or her wealth
between the risky asset and the risk-free asset. The realization of the risk-free as-
set return is in general allowed to be stochastic, so it is not necessarily a strictly
riskless return.23 To construct the investor views on the risky asset expected returns
(2-2), we assume a dynamic regression model to emulate the decision process of
fundamental analysis.24

The risky asset expected returns are structured to depend on their past val-
ues as well as on historical realizations of other predictive variables. Our approach
is to introduce earnings data as an information variable in the dynamic regression
model. It seems appropriate to consider earnings data for forecasting returns on eq-
uities because earnings are constructed with the objective of helping analysts eval-
uate a company’s fundamental value.25 Specifically, we decided to use the metric
(price-earnings ratio) in our dynamic regression model as this exogenous variable.
This metric is based on the implications of the theory of financial markets and the
methodology of fundamental analysis.26Following our notation for the dynamic re-
gression model, we can describe the investor conditional expected excess returns
(qt,i) on the risky asset i at time t, based on its past values27 and price-earnings ratio

23 This generalization is made in order to mimic the real world where even short-term government
bills carry a small degree of risk.

24 Dynamic regression models have proven to be especially useful for describing the dynamic
behavior of economic and financial time series and for forecasting. In addition, forecasts from such
models are quite flexible because they can be made conditional on the potential future paths of
specified variables in the model.

25 There is a large amount of literature on the response of securities prices to earnings announce-
ments (see Kormendi and Lipe (1987) for a list of references).

26 Value investing theory was first derived by teaching classes of Ben Graham and David Dodd at
Columbia Business School in 1928 and their 1934 work called Security Analysis (Graham and Dodd
(1934)). This theory aims to predict the expected return of a stock by measuring its intrinsic value.
They consider that the individual must choose to buy securities whose shares appear undervalued by
some form of fundamental analysis, for instance, such securities trade at discounts to book value,
have high dividend yields, have low price-earnings multiples or have low price to book ratios. The
value investing has proven to be a successful strategy throughout the years (see Fama and French
(1992); Barber and Lyon (1997); Dreman and Berry (1995)).

27 Which means past excess returns.
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as

ert,i = φ0,t +
J∑
j=1

φj,tert−j,i +
K∑

k1=1
k2=1
k2>k1

φk1,tXk1,k2,i + εt (2-22)

qt,i = E[ert,i]

where ert,i stands for the excess return of and asset i at time t and is given by
ert,i = rt,i− rfree,t. We also have as a predictive variable Xk1,k2,i which is given by
Xk1,k2,i =

PEt−k1,i

PEt−k2,i
.28

To estimate the uncertainty Ωt associated with the investor view, we assume
that conditional variance can be calculated from historical views

Ωt = V ar(εt) (2-23)

And to specify a value for τt, the parameter used to scale the investors’ uncer-
tainty in their prior estimate of the returns, we will use the intuitive method proposed
by He and Litterman (1999) where

τt =
Ωt

PtΣtP ′t
(2-24)

Unfortunately, the scalar τt and the uncertainty in the views Ωt are the most
abstract and difficult parameters to specify in the BL model.29 The greater the level
of confidence in the expressed views, the closer the new return vector will be to the
views. If the investor is less confident in the expressed views, the new return vector
should be closer to the implied equilibrium return vector.30

From the original BL model, the authors only recommend a departure from
the equilibrium portfolio if the asset is the subject of a view. And for assets that are
the subject of a view, the magnitude of their departure from the equilibrium portfolio
is controlled by the ratio of the scalar τt to the variance of the error term ωk,t of the
view in question.31 In fact, the variance of the error term ωk,t of a view is inversely
related to the investor confidence in that particular view. The method proposed

28 This specification could be extended to a multivariate dynamic regression model.
29 For a detailed sensitivity analysis on the magnitude of this parameter in the BL model, refer to

Fernandes et al. (2012).
30 The scalar τt is more or less inversely proportional to the relative weight given to the implied

equilibrium return vector.
31 Since we consider that those uncertainties are independent across views, the uncertainty matrix
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in He and Litterman (1999) calibrates Ωt given an investor specified confidence
level for each view. The investor specifies his or her confidence as a percentage
that represents the fraction of the change in returns between 0% confidence and
100% confidence. In fact, there are several different approaches to calibrating the
parameter τt.32

2.3.2 Market Equilibrium Model

We propose an alternative approach to extract market implied expected returns
from a proxy of an average portfolio that a typical investor holds, considering his
or her risk aversion. Financial services institutions that provide personal financial
advice to retail clients are obliged to ensure that the financial products they rec-
ommend are suitable to each client’s objectives, financial situation and needs. An
important part of this assessment is the knowledge of the client’s tolerance to risk.
Most institutions have developed practices and procedures, which are designed to
identify their client’s understanding and tolerance for risks. To cite just a few we
can mention risk profiling questionnaires, life cycle approach and sensitivity anal-
ysis (see White’s paper on asset allocation at Barclays33 and Vanguard investment
risk and financial advice34).

To design our market equilibrium portfolios, we preserve the CAPM assump-
tion of homogeneous expectations among investors. As such, we assume that in
equilibrium, all investors have access to the same information and agree about the
risk and expected return of all assets. Let us assume that investors may have several
risk profiles and each profile will have a neutral (or basis) asset allocation, which
may vary dynamically over time. Let us use this word in the context of Black and
Litterman (1992) where the sensible definition of neutral means is the set of ex-

(of variances of the error terms) can be generally defined as

Ω =


ω1 0 0 0 0
0 ω2 0 0 0
0 0 ω3 0 0
0 0 ... ... 0
0 0 0 0 ωk

 (2-25)

where each ωk is defined as the variance associated to the error term of view k, which should be
specified by the investor.

32 He and Litterman (1999) state they set it equal to 0.05. Satchell and Scowcroft (2000) state
many people use a value around 1. Meucci (2010) proposes a formulation of the BL model without
this parameter.

33 Website: http://www.barclayswealth.com.
34 Website: https://www.vanguard.co.uk.
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pected returns that would “clear the market” if all investors shared identical views.
We will consider hereafter what happens when we adopt these equilibrium risk pre-
miums35 as our neutral means when we have no views. Our main assumption is that
investors risk profiles will be specified by certain volatility target levels. As so, it
is possible to extract the implied allocation as the result of the following dynamic
system

σrp,t ≡
√

x′tΣtxt = σtg,t (2-26)

where σrp,t corresponds to the portfolio volatility for each risk profile and σtg,t

equals the pre-specified volatility target level. Let us assume that Σt is known
at time t. After matching the calculated assets volatility with the portfolio volatility
target levels, we arrive at the typical portfolios xrp,t held by investors, considering
their risk profile. By these implied “basis” allocation we can assess the associated
implied risk premium πrp,t as

πrp,t = δΣtxrp,t (2-27)

We assume that the average global risk aversion parameter is fixed for all risk pro-
files. Finally, we have the following expression for the mean and covariance matrix
for the dynamic BL model, considering each category risk profile

µBL,rp,t =
[

(τtΣt)
−1 + P′tΩ

−1
t Pt

]−1 [
(τtΣt)

−1πrp,t + P′tΩ
−1
t qt

]

ΣBL,t =
[

(τtΣt)
−1 + P′tΩ

−1
t Pt

]−1

+ Σt

(2-28)

where Σt is the conditional covariance of returns and ΣBL,t is the total conditional
covariance of the posterior distribution.

Given the mean µBL,rp,t and the covariance matrix ΣBL,t, the optimal portfo-
lio for each risk profile can be calculated by a standard mean-variance optimization

35 In the BL framework, the equilibrium concept is useful to provide the investor with a neutral
framework which he or she can adjust according to her own views and optimization specification.
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method, as described below

max
xrp,t∈Rn

x′rp,tµBL,rp,t

s.t.

x′rp,tΣBL,txrp,t ≤ σ2
tg,t

x′rp,tι = 1

xi,rp,t ≥ 0,∀i

(2-29)

We decided not to allow short selling in our case study because we define it as
a typical asset class decision making process where individuals construct a portfolio
using one risky asset and one riskless asset.

2.4 Case Study and Application

In this numerical example, we consider daily allocation decisions between
the risky asset and the risk-free asset. We consider the Bovespa index36 as our risky
asset and the DI spot rate37 as our riskless asset. Our dataset comprises daily ob-
servations for the Bovespa index and its consolidated price-earnings ratios38, which
were collected from Bloomberg information system.39 The DI spot rate data were
collected from Cetip system.40 Our full database ranges from June 30, 2004 up to
December 28, 2012, comprising 2,102 observations.

We estimate the dynamic regression model for (2-22) based on the following
specification:

qt,i = φ0,t + φ1,tert−1,i + φ2,tert−2,i + φ3,tert−3,i + φ4,t
PEt−1,i

PEt−4,i

(2-30)

where ert−j,i stands for the past excess return of asset i and is given by ert−j,i =

36 The Bovespa index is a gross total return index weighted by traded volume and comprise the
most liquid stocks traded on the São Paulo Stock Exchange.

37 The DI spot rate is the overnight interbank deposit rate. It corresponds to the interest rate at
which a depository institution lends immediately available funds (balances within the central bank)
to another depository institution overnight. It provides an efficient method whereby banks can access
short-term financing from central bank depositories.

38 The Bovespa index consolidated price-earning ratio is a weighted average of the underlying
companies price-earnings.

39 Website: http://www.bloomberg.com.
40 Website: http://www.cetip.com.br.
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rt−j,i − rfree,t. The parameters (φ0,t, φ1,t, φ2,t, φ3,t, φ4,t) are estimated41 using past
data and used to calculate qt and Ωt one step ahead. The values for past excess re-
turns (eri,t−j,∀j = 1, 2, 3) are known, as well as the values for the past consolidated
price-earnings ratio for the equity index (PEi,t−j , where j = 1 and j = 4).42

To extract the market implied expected returns for the different risk profile43

portfolios (defined as conservative, moderate, moderately aggressive, aggressive)
we reference this empirical evaluation on the average level for the Brazilian invest-
ment fund industry.44 We assume that σtg,t equals 1% per annum for conservative
investors, 4% per annum for moderate investors, 8% per annum for moderately ag-
gressive investors and 12% per annum for aggressive investors.

Figure 2.2 depicts the out-of-sample results for the proposed trading strategy
based on the BL model (TS-BL). The graphs on the left side plot the cumulative
performance in percentage terms over time for the TS-BL model and compare the
results with MV optimal portfolios and a benchmark strategy (buy-and-hold strategy
in the DI spot rate). The graphs on the right side plot the risk-return relationship
between the TS-BL and the MV optimal portfolios. We plot the average annualized
return on the vertical axis versus the annualized volatility for each risk profile on the
horizontal axis. In both cases, we plot the graphs to all risk profiles (conservative,
moderate, moderately aggressive and aggressive).

41 Considering a time period of 252 observations.
42 The purpose of this simple model is far from being considered the best specification to predict

returns. It merely seeks to test the power of our trading strategy based on the BL framework, when
we incorporate a different source of information beyond past average returns.

43 Typically, financial services institutions classify investors ranging from conservative to aggres-
sive profiles. Conservative investors usually want stability and are more concerned with protecting
their current investments than increasing the real value of their investments. They usually want their
portfolio to provide them with an inflation adjusted income stream to pay their living expenses.
Moderate investors are longer term investors who want a relatively stable growth and tolerate some
fluctuation. Moderately aggressive investors are long term investors who want good real growth in
their capital and for that, accept a fair amount of risk. Finally, aggressive investors are long term
investors who want high capital growth. Substantial fluctuations in value are acceptable in exchange
for a potentially high long term return.

44 The Brazilian fund industry has achieved a high degree of maturity, improving its practices,
rapidly adapting to the demands of a country that is becoming increasingly stable. Currently there
are around 400 fund managers licensed by the CVM (Brazilian Securities Commission) and super-
vised by ANBIMA (Brazilian Financial and Capital Markets Association) who are responsible for
the management of more than 9,000 funds. Total resources invested in Brazilian investment funds
reached the R$ 2.0 trillion mark at the end of 2012, a figure equivalent to around 45% of GDP (see
Website: http://portal.anbima.com.br).
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Fig. 2.2: Optimal portfolios cumulative performance (left side) and risk-return relationship
(right side) for several risk profiles.
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The optimal portfolios generated by our proposed trading strategy (TS-BL)
obtained a superior cumulative performance for all the investors’ risk profiles when
compared to both MV optimal portfolios and benchmark strategy. Despite the fact
that the TS-BL model does not dominate the MV model with respect to both criteria
(obtaining a higher return with a lower risk), when increasing the risk tolerance,
ranging from conservative to aggressive investors, we can observe an increase in
risk45 (respecting the predefined target levels for each risk profile) followed by an
even greater increase in return. We might also analyze in Figure 2.3 the Sharpe
index for the MV and TSBL optimal portfolios. One can notice the superiority of
the TSBL model in all risk profiles.

Fig. 2.3: Optimal portfolios Sharpe index for several risk profiles.

Risk Profile MV TS-BL

Conservative 0.104 0.390

Moderate 0.130 0.337

Mod. aggressive 0.133 0.356

Aggressive 0.137 0.357

Sharpe Index

Further, to check whether this evidence is valid for the different market pe-
riods over our sample, we consider the fact that the investor holds this strategy for
different time intervals and plot in Table 2.1 trailing returns statistics for two differ-
ent time periods for the proposed model with several risk profiles. The table shows
that the proposed TS-BL model presents a higher proportion of positive excess re-
turns when compared to the MV model for all risk profiles. This result is observed
for the two analyzed holding periods (6 months and 1 year). We can observe that
the TS-BL model for the aggressive profile presents a higher average negative ex-
cess return (while still respecting the target volatility imposed by the optimization
problem) for both periods.

45 Measured by volatility.
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Tab. 2.1: Comparative table for trailing returns in different time intervals and several risk
profiles.

Time interval Risk Profile

% Proportion of positive 

excess return (TS-BL 

returns - MV returns)

Average positive excess 

returns*

Average negative excess 

returns*

Conservative 61% 0,5% -0,3%

Moderate 59% 1,7% -1,3%

Mod. Aggressive 64% 3,2% -2,9%

Aggressive 69% 5,0% -5,9%

Conservative 63% 0,3% -0,2%

Moderate 63% 1,0% -1,0%

Mod. Aggressive 67% 2,2% -2,4%

Aggressive 66% 3,5% -3,9%

excess returns*= TS-BL optimal portfolios returns - MV optimal portfolios returns

1 year

6 months

To investigate this result, we present Figure 2.4. In this figure we plot the
percentage dynamic optimal allocation in the risky asset on the left vertical axis (in
blue) against the estimated volatility of the optimal portfolio on the right vertical
axis (in red).46 The graphs on the left side refer to MV optimal portfolios and
the graphs on the right refer to TS-BL optimal portfolios. In both cases, we plot
the graphs to all risk profiles (conservative, moderate, moderately aggressive and
aggressive).

46 Calculated over a sample of 252 observations.
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Fig. 2.4: Optimal allocation in risky asset (in percentage terms) for MV and TS-BL for
several risk profiles.
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One can observe from Figure 2.4 that both specifications (MV and TS-BL)
enhance the allocation in the risky asset, as the investor risk profile moves from
conservative to aggressive, respecting the predetermined volatility level set by the
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optimization problem. However, it is worth mentioning that the MV traditional
model, during some crisis periods47, indicates a total allocation to the riskless asset,
which persists for a period of time. This behavior is observed even for aggressive
risk profile optimal portfolios.

We understand this out-of-sample behavior for the MV model as the effect
of the magnitude of estimation errors. When a crisis scenario occurs, historically
based estimates (input in the MV model) exhibit significantly more negative ex-
pected returns which persist for a period of time. As a consequence, the MV model
does not suggest any allocation in the risky asset. On the other hand, during those
same crisis scenarios, our blended posterior expected returns exhibit a different be-
havior as the TS-BL model reports a modest decrease in the risky asset allocation.
One possible explanation is related to the methodology that we use to build this
posterior distribution, which combines fundamental analysis priors and equilibrium
risk premiums. In this way, our proposed trading strategy seems to help reduce the
impact of estimation errors on portfolio weights along time. Furthermore, it is im-
portant no notice that the TS-BL model still respects the target volatility imposed by
the optimization problem, considering each risk profile (as from Figure 2.4 during
those crisis periods the TS-BL model reduces the allocation in the risky asset to a
lower level, until risky asset volatility reverts to a lower level).

2.5 Conclusions

In this work we proposed a dynamic asset allocation strategy based on the
Black-Litterman model. Our challenge was to apply the BL model considering that
the investment strategy should evolve over time in sympathy with the investors risk
tolerance and the market environment. We solve an adaptive portfolio choice prob-
lem of an investor faced with a time-varying investment opportunity set. We find
that it is possible to use the Black-Litterman framework to design more reliable
and stable investment strategies. The proposed trading strategy incorporated with
neutral equilibrium estimates used in the computation of Black-Litterman implied
that expected returns can be used as an effective tool to mitigate allocation insta-
bilities due to estimation errors. The traditional mean-variance model suggests that
investors should tilt their allocation from the risky asset towards the risk-free asset

47 Highlighting the 2008 subprime crisis and the 2011 Europe debt crisis.
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during high volatility periods,48 and this allocation persists for long period of time.
This is the result of estimating expected returns based on historical data, which
exhibit highly negative estimates during crisis periods. On the other hand, the pro-
posed TSBL model suggests that investors must carry part of their position in the
risky asset also through high volatility periods, as long as the risk constraints are sat-
isfied. This is due to the improvement in the expected returns estimate, combining
a dynamic trading strategy with equilibrium portfolios. We back-tested the model
for different market environments (bull and bear markets) and several investor risk
profiles and obtained similar results.

48 Even for aggressive profile investors.
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3
Paper 2: Robust Portfolio Models based on
Empirical Adaptive Loss

In this work we provide an approach to model portfolio decisions under un-
certainty that relies on decision-maker risk tolerance to construct data-driven adap-
tive polyhedral uncertainty sets from joint dynamics of asset returns. Further, we
propose a learning specification algorithm to forecast future returns. The provided
specification dynamically updates conditional probability distribution of asset re-
turns and reduce asset allocation instability due to estimation errors.

3.1 Introduction

Portfolio selection model as proposed by Markowitz (1952) is known as a
single-period allocation problem, where the investor is myopic1 by construction
and her goal is to maximize the end of period terminal wealth taking into account
her risk aversion. The model is based on the assumption that investment decisions
depend only on the expectation value and covariance structure of asset returns.2

Implementing such portfolios requires the knowledge of both asset expected return
and covariance, which is usually considered by classical optimizers (such as mean-
variance model) as given with certainty.

However, in real asset allocation problems input data are usually uncertain.
In this context, robust optimization (RO) techniques have received significant in-
terest by the investment management community, as they allow portfolio managers
to incorporate the uncertainty introduced by estimation error directly into the opti-
mization process. Its goal is to compute solutions with a priori ensured feasibility
when the problem parameters are assumed to be unknown but confined within a
prescribed uncertainty set. Given optimization problems with uncertain parameters,
RO finds the best decision in view of the worst-case parameter values within these
uncertainty sets. The uncertainty model is not stochastic, but rather set-based and
the decision maker can construct a solution that is optimal for any realization of

1 Investors are said to be myopic when they take decisions based on a one-period analysis of their
investments (see Benartzi and Thaler (1995)).

2 Both estimates are usually made over the same time horizon.
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the uncertainty in a given set. Under RO, modelers agree to accept a suboptimal
solution for the nominal values of the data, in order to ensure that the solution re-
mains feasible and near optimal when the data change. In this work we introduce
a robust portfolio optimization methodology that models uncertainty by budgeted
polyhedral uncertainty sets using data-based information, while retaining the ad-
vantage of a linear optimization framework. We define the problem constraints as
polyhedral dynamic sets described by a list of its vertices, which are set as past
asset returns obtained over moving windows with a length of J-days. Our model
specification is designed to be robust to changes in market conditions both in the
problem constraints and in the objective function. We also consider the concept of
Comprehensive Robustness proposed by Ben-Tal et al. (2006) which aims to control
the deterioration in performance when the uncertainties materialize outside of the
uncertainty set. Case studies that follow provide some interesting insights about the
model behavior in those scenarios. To the best of our knowledge this contribution
for portfolio optimization literature is relevant for it provides a tractable approach
to dynamic decision-making under uncertainty. Our main contributions are:

(i) We propose a non-parametric prediction model to forecast future returns. It
relies solely on signals extracted from data. The optimal signal is the result
of an optimized convex combination of representative signals modeled from
adaptive indicators that may vary considering the existing dynamic condi-
tional correlations between asset returns.

(ii) Considers that optimal portfolio losses are modeled using a robust adaptive
approach. Its potential loss is limited by the worst-case scenario inside pre-
defined polyhedral dynamic uncertainty sets.

(iii) Incorporates transaction costs, covering all fee structures typically observed
on the market to give a more rigorous result for practical purposes.

Our model is an adaptive portfolio optimization method in a discrete-time,
finite horizon setting which considers risk aversion (in the loss restriction), portfolio
constraints and the existence of real transaction costs.

3.1.1 Literature Review in RO applied to Portfolio Problems

Robust optimization (RO) is a powerful modeling methodology that seeks to
minimize the negative impact of future events when the values of model parame-
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ters are uncertain and their distributions are unknown. We might define a model
as robust if it guarantees, with high probability, that the objective function will be
achieved while the solution will be feasible for all possible realizations of each un-
certain parameter, contained within the bounds of an uncertainty set. RO approach
is based on optimizing against the worst-case realization of the uncertainties within
a given set, using a min-max objective. Typically, the original uncertain optimiza-
tion problem is converted into an equivalent deterministic form (its robust counter-
part) by duality arguments and then solved using standard optimization algorithms.
The robust counterpart of an uncertain mathematical program is a deterministic
worst-case formulation in which model parameters are assumed to be uncertain, but
confined in a bounded interval known as an uncertainty set.

The notion of uncertainty set for parameters was first studied in the early
1970s, when Soyster (1973) proposed an inexact linear optimization model to con-
struct a solution feasible for all input data belonging to a convex set.3 Later, the
use of uncertainty sets was formally extended to introduce a robust formulation
when Ghaoui and Lebret (1997) present a robust least-squares solution to a prob-
lem where the parameters are unknown but bounded matrices. They show how
this solution can be computed using second order cone programming. This idea
was further studied by Ghaoui et al. (1998). They present formulations for robust
semidefinite programming and demonstrate sufficient conditions that guarantee the
existence of robust solutions. Ben-Tal and Nemirovski (1999, 2000) also provide
analysis of RO framework using general convex programming. They firstly pointed
out that ellipsoidal uncertainty sets formulate the original uncertain linear program-
ming problems to robust conic quadratic programs that might be efficiently solved
by interior point methods. Afterwards they expand the domain to generic convex
problems. Both Ben-Tal and Nemirovski (1999, 2000), as well as Ghaoui and Le-
bret (1997) and Ghaoui et al. (1998) papers pointed out that the approach originally
proposed by Soyster (1973) results in robust solutions that exhibit an objective func-
tion value much worse than that of the nominal problem as it protects against the
worst-case scenario which may not be meaningful for decision-making process. In
a less conservative model they proposed to scale down the uncertainty set such that
it only includes the “most likely” values of the uncertain parameters. Consequently,

3 Soyster’s model is based on Euclidean distance. Thereat, when the difference between real
data and nominal data is relatively large, the feasible region of this model becomes relatively small,
which leads the model to be too conservative, and the robust solution will have too much of loss of
optimality.
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the true value of any uncertain parameter may be outside the bounds of the set, for
which the worst-case solution has not accounted; therefore, feasibility is no longer
totally guaranteed. And since then, other authors have been working on alternative
solutions that could reduce the conservatism of the solution (also known as the price
of robustness4). Bertsimas and Sim (2004, 2006) proposed an alternative method to
control for the level of conservatism of the solution while retaining the advantages
of the linear framework introduced by Soyster. Bertsimas and Brown (2009), based
on the theory of coherent risk measures, proposed a methodology for constructing
uncertainty sets within the framework of RO for linear optimization problems with
uncertain parameters. We mention here a few papers and refer the reader to Sim
(2004) and the references therein for a more complete survey.

In recent years, robust models have played a major role in portfolio opti-
mization for resolving the sensitivity issue of the classical MV model. Robust
portfolios of this kind are relatively insensitive to the distributional input param-
eters and typically outperform classical Markowitz portfolios (see Ceria and Stubbs
(2006)). Goldfarb and Iyengar (2003) present statistical methods for constructing
uncertainty sets for factor models of asset returns and show their robust portfolio
problem can be reformulated as a second-order cone program. Tutuncu and Koenig
(2004) propose a model with box uncertainty sets for mean and covariance and
show the arising model can be reduced to a smooth saddle-point problem subject to
semidefinite constraints. Ghaoui et al. (2003) show the worst-case VaR (Value-at-
Risk) under partial information on the moments can be formulated as a semidefinite
program. Fabozzi et al. (2007) and Fabozzi et al. (2010) provide a survey of re-
cent contributions to robust portfolio strategies and cover results derived in terms of
both mean-VaR (Value-at-Risk) and mean-CVaR (Conditional Value-at-Risk) risk
measures. Bertsimas and Pachamanova (2008) suggest robust linear optimization
formulations of the multi-period portfolio optimization problem. More recently,
applied papers present interesting empirical results. Guastaroba et al. (2011) in-
vestigate robust techniques when applied to a specific portfolio selection problem
based on real-life data from London Stock Exchange Market. Gregory et al. (2011)
evaluate the cost of robustness for the robust counterpart to the maximum return
portfolio optimization problem where the uncertainty of asset returns is modeled
by polyhedral uncertainty sets. Ye et al. (2012) present a one-period mean-variance
model, where the mean and covariance matrix are assumed to belong to an ex-

4 Bertsimas and Sim (2004) introduced this concept which considers how “heavily” the objective
function value is penalized when we are guarded against constraint violation.
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ogenously specified uncertainty set and formulate the problem as a conic program.
Jianke et al. (2012) propose a robust counterpart for linear optimization with uncer-
tain data, under a new distance metric, maintaining the problem linearity. Scutella
and Recchia (2013) review several mathematical models and related algorithmic
approaches to address uncertainty in portfolio asset allocation. Li and Kwon (2013)
present an approach to enable investors to seek a robust policy for portfolio selection
in the presence of rare but high impact realization of moment uncertainty.

The majority of previous robust portfolio optimization research has stemmed
from the work of Ben-Tal and Nemirovski (1998); Ghaoui and Lebret (1997) and
Ghaoui et al. (1998) who model unknown parameters by ellipsoidal sets and con-
sider second-order cone programming (see by Lobo and Boyd (2000); Goldfarb and
Iyengar (2003); Ghaoui et al. (2003)). In particular, the following work is focused
on linear programming and polyhedral uncertainty sets (as of the work of Bertsimas
and Sim (2004)).

3.1.2 Notation and Assumptions

In this work we develop an adaptive portfolio selection problem using robust
optimization techniques. Hereafter we present the robust optimization framework
when the decision-maker must select a strategy before (or without) knowing the
exact value taken by the uncertain parameters. We consider a single notation for
all models presented. Let Rt,i denote the return on asset i between time t and time
t + 1, which is a random variable, and R̂t,i ≡ E(Rt,i | It−1) the expected return for
asset i between time t and time t + 1 based on all the information available up to
time t− 1, here represented by set It−1. We also consider the following diagram to
represent the time frame of variables estimation and model implementation.

DBD
PUC-Rio - Certificação Digital Nº 1012094/CA



3. PAPER 2: ROBUST PORTFOLIO MODELS BASED ON EMPIRICAL
ADAPTIVE LOSS 43

Fig. 3.1: Time frame diagram for estimation period and implementation period.
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We consider daily allocation decisions in all our applications. As such, we
assume the allocation in asset i is given by xt,i and is made at the beginning of day
t, considering the estimated return R̂t,i. Afterwards we test if this allocation was
successful in an out-of-sample analysis, comparing this estimated return with the
observed return for time period t+ 1.

3.2 Robust Adaptive Portfolio Model - RA

An investment portfolio evolution is driven by how much the individual can
save and invest, what she invests in, what return has she earned and how much
of that return is surrendered to investment costs (transaction costs5, administration
and incentive fees) and to taxes. Except for asset returns, we have almost com-
plete control for the other factors listed above. The point is: the returns we get on
our investments are uncertain. Past performance may be an indicative of the future
performance, but is not necessarily a guarantee of future results. This makes mod-
eling asset return dynamics particularly challenging. In this section we describe the
discrete-time model6 we use for asset return dynamics and formulate the optimal
investment problem in its terms.

Let us consider a wealth maximization problem subject to an adaptive robust
portfolio loss and budget constraints ∀t given by

5 Such as exchange, settlement, permanence and registration fees, brokerage and slippage costs.
6 In discrete-time models the asset return dynamics are primarily governed by a rule that dictates

how the price or return changes from one period to the following one.
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max
x∈Rn

R̂′txt, (3-1)

s.t.

L(Rt,xt) ≤ ε1,∀Rt ∈ Ξt (3-2)

B(Rt−1,xt,xt−1, ct) ≥ ε2,∀i = 1, ..., n (3-3)

where R′t = (Rt,1, Rt,2, ..., Rt,n) is the vector of asset returns, xt
′ = (xt,1, xt,2, ..., xt,n)

is the vector of decision variables (where each xt,i corresponds to the financial asset
allocation in asset i to be executed at the beginning of day t)7 and n is the number
of available assets. The loss function is denoted by L(.) and the budget function is
denoted by B(.).

3.2.1 Returns’ Adaptive Forecast - R̂t

The adaptive forecast for future asset return i at time t is given by signal R̂t,i.
We assume a mixed signals model to predict future asset returns which dynamically
selects the signal that performs better, considering an out-of-sample analysis. In this
study we propose the use of multiple built-in indicators in the objective function
as we believe they can work well to predict the direction and volatility of future
prices when combined. We denote those constructed signals by Sigs,t,i, in which
s stands for signal s, t stands for the day we will implement this signal (as we
consider past data up to day t − 1 to estimate a signal to time t) and i stands for
asset i. A detailed formulation for the built-in signals is provided in Appendix. Our
mixed signals model is a dynamic linear combination of expected returns given by
technical indicators. We blend lagging, leading and volatility signals to construct
the signal (return) formula ∀t as

R̂t,i ≡ E(Rt,i | Sigs,t−1,i) =
S∑
s=1

α∗s,t,iŜigs,t,i,∀i (3-4)

where Ŝigs,t,i correspond to each signal s, estimated using past data up to time t to
estimate the signal for time t. S corresponds to the total number of signals used in

7 We assume the investor allocates all her wealth at each time t. For that, the mixed signals model
consider past signals up to time t− 1 to forecast the return at time t.
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our mixed signals model and α∗s,t,i is the optimized vector resulting from

α∗t,i = arg min
α∈Rn

B∑
b=1

[
Rt−b,i −

S∑
s=1

αs,iŜigs,t−b,i

]2

s.t.

S∑
s=1

αs,i = 1,∀i

(3-5)

where α∗
t,i
′ = (α∗1,t,i, α

∗
2,t,i, ..., α

∗
S,t,i) is the vector of optimized weights in each

signal and B stands for a robustness parameter defined as a time period during
which we must optimize the function above.

From (3-2) we have the loss given by L(.) which is a general loss function
that depends on the vector of asset returns Rt and the decision vector xt. It is set to
be less or equal to a scalar ε1. We propose to model the uncertainty in the problem
by restricting the uncertain parameters to belong to polyhedral adaptive uncertainty
sets denoted by Ξt. Under our formulation, those uncertainty sets are defined as
adaptive along time and are constructed considering an empirical approach. We set
the past observed returns Rt−j,∀j = 1, ..., J as points in space and we define the
convex polyhedral in terms of a convex hull of this set of points.8 In the next section
we detail the proposed specification.

In addition, we define the budget function B(.) considering the existence of
transaction costs.9 This function depends on the vector of past asset returns Rt−1,
the decision vector xt and also on transaction costs ct at time t.

Under this general formulation the decision-maker constructs a solution that
is optimal for any realization of the uncertainty in a given set. In the sequel, we
outline the proposed approach to construct the uncertainty sets based on available
information. We show there are several convenient parameterizations of the uncer-
tainty set that allows the decision-maker a desired level of flexibility in choosing
the trade-off between robustness and performance.

8 As proved by Grunbaum and Ziegler (2003) a bounded convex polytope can be defined as the
convex hull of a finite set of points, where the finite set must contain the set of extreme points of
the polytope. Such definition is called a vertex representation (V-description). And for a compact
convex polytope, the minimal vertex representation is unique and is given by the set of the vertices
of the polytope).

9 A detailed specification for transaction costs is provided in Appendix.
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3.2.2 Empirical Robust Loss Constraint - L(Rt,xt) ≤ ε1

Many optimization problems involve parameters which are not known in ad-
vance but can be estimated. We understand this is generally true, for instance, in
asset allocation decisions. Such problems fit perfectly into the framework of RO.
In this work we apply RO methods in the context of portfolio asset allocation with
focus on the loss specification.

As by (3-2) we assume that we must guarantee that a loss function estimated
over the portfolio must be smaller than a predefined limit which would be, in its
turn, a function of the investor risk aversion. However, the parameters (specifically,
asset returns) are uncertain. We decided to apply robust optimization methods to
solve the problem, considering that those uncertain parameters are confined within
a prescribed adaptive uncertainty set Ξt. Our goal is to find the best decision at any
time t in view of the worst-case parameter values within these adaptive uncertainty
set.

Let us recover that R′t = (Rt,1, Rt,2, ..., Rt,n) is the vector of asset returns
and x′t = (xt,1, xt,2, ..., xt,n) is the vector of decision variables. Let us denote by γ
(a negative scalar) the parameter that defines a percentage loss of the total wealth
at time period t − 1, denoted by Wt−1. We assume the loss constraint (3-2) ∀t is
described generally as

R′txt ≥ γWt−1,∀Rt ∈ Ξt (3-6)

We define the uncertainty set Ξt as

Ξt =
{
Rt ∈ Rn | ∃ζ ∈ Z : Rt =

J∑
z=1

ζzR̄z

}
(3-7)

where R̄z are return samples and ζz is defined in the set

Z =
{
ζ ∈ [0, 1]J |

J∑
z=1

ζz = 1
}

(3-8)

The robust loss constraint (3-6) ∀t is equivalent to

( J∑
z=1

ζzR̄z

)′
xt ≥ γWt−1,∀ζz ∈ Z (3-9)
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which corresponds to

min
ζz∈Z

( J∑
z=1

ζzR̄z

)′
xt ≥ γWt−1 (3-10)

or rewriting

min
ζz∈Z

J∑
z=1

ζz

(
R̄′zxt

)
≥ γWt−1 (3-11)

For a given allocation xt, the solution to the minimization problem above
would be given by ζz = 1 if R̄′zxt ≤ R̄′wxt,∀w 6= z or ζz = 0, otherwise. So, for a
general allocation xt the constraint (3-6) would always be on the form

R̄′zxt ≥ γWt−1,where R̄′zxt ≤ R̄′wxt (3-12)

And to guarantee that the robust loss constraint is satisfied for any allocation
xt it is sufficient to include the J constraints

R̄′zxt ≥ γWt−1,∀z = 1, ..., J (3-13)

Hereafter in this work let us assume that the polyhedral adaptive set describing
the uncertainty is constructed based on the information available to the decision-
maker before the robust optimization approach is implemented (historical data).
So, the uncertainty set Ξt is estimated adaptively considering past observed returns.

We define the loss function, ensuring that the optimal portfolio does not in-
cur, from time period t − 1 until time period t − J , a daily loss greater than a
pre-specified parameter γ that defines a percentage loss of the total wealth at time
period t − 1, denoted by Wt−1. Considering J the number of backward days, we
introduce a concept of adaptive robustness applied to past performance of the port-
folio.10 This approach enables the model to capture the dynamics of the empirical
dependence structure between the assets. Besides that, the robustness seeks to en-
sure that the model has a risk exposure that is defined according to the investor risk
profile (parameter γ).

The intuition here is to let the model capture assets dynamic behavior over
different market conditions. We expect such adaptive loss constraints to be able

10 Is is also known as data-driven optimization as it uses observations of random variables as direct
inputs to the mathematical programming problems.
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to generate, adaptively, different feasible regions11 for the investor asset allocation
decisions.

To illustrate this adaptive loss function, let us consider an intuitive example
where we have two risky assets (Asset 1, Asset 2) and one risk-free asset (Asset 3)
with the following two-dimensional scatter plot for observed returns in two different
days

Fig. 3.2: Scatter plot of risky assets daily returns - intuitive example.

Following the proposed loss constraint above, and considering γ = −3%, for
day 1 we can write the constraint as −3.54%x1 − 4.86%x2 + 0.05%x3 ≥ −3% (in
red) and for day 2 we can write the constraint as−3%x1−3%x2 +0.05%x3 ≥ −3%

(in black dotted line). We also consider that x1+x2+x3 = 1. By those equations we
can thus construct the following feasible regions for a two-dimensional plot (Asset
1 against Asset 2; the Asset 3 can be understood as being in the third dimension of
this plot), depicted in the figure below.

11 As optimal allocation strategies will vary depending on asset return relationship and its magni-
tude.
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Fig. 3.3: Feasible region (plotted in blue) of the percentage portfolio weights in Asset 1
against Asset 2 - intuitive example.
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One can notice that the loss constraint built using data in red is active, whereas
the loss constraint built using data in black dotted line is not active. The feasible
region generated by data in red is smaller, as expected (as the estimated sample
returns are negative and with higher magnitude). And this feasible region is adaptive
along time, since new constraints are added to the portfolio problem.

Going back to our portfolio problem, as we will see in the case study that
follows, we will be able to invest in any of three assets (one risk-free and two risky
assets. The loss constraints presented in (3-2) must be able to capture the evolving
dynamics between those assets. For that we decided to illustrate how it works during
different market conditions (such as non crisis and crisis periods). From Figure 3.4
we can observe the behavior of risky assets daily returns during those periods, which
is an input to our portfolio model. Figure 3.4 depicts the past observed returns for
two risky assets (BRLUS - an exchange rate and BVSP index - an equity index).
We plot in blue squares the observed returns during some non crisis periods and in
red dots the observed returns during some crisis periods.12

12 Crisis periods corresponds to high volatility market periods.
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Fig. 3.4: Scatter plot of risky assets daily returns: BVSP index versus BRLUS currency,
considering different market conditions: non crisis and crisis periods.
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Applying the loss constraints as defined in (3-13) we generate the following
feasible regions, for non crisis and crisis periods, respectively plotted in the follow-
ing figure

Fig. 3.5: Feasible regions (plotted in blue) of the percentage portfolio weights in each risky
asset (the risk-free asset is plotted in the third dimension of this graph). The first
plot is during non crisis period and the second plot is during crisis period.
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We can observe the dynamic behavior of the proposed loss constraints from
the plots above. During non crisis periods the constraints are not active and the
feasible region allows the model to select any allocation (considering that short
selling is not allowed) in the risky assets, ranging from 0% up to 100%. However,
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during crisis period, as the daily observed returns for the risky assets get more ex-
treme (negative returns with higher magnitude), the loss constraints get active and
the feasible region for the risky assets is reduced, indicating a higher allocation in
the risk-free asset (in the third dimension of the plot). As expected the proposed
adaptive empirical loss seems to capture the dynamics of the dependence structure
of asset returns. At this point we just want to illustrate what is expected when we
define our portfolio model loss constraints as (3-13). In the case study that follows
we will analyze the results in more detail.

3.2.3 Budget Constraints

3.2.3.1 An Asset Allocation Problem (RA-AAP)

When we consider an asset allocation problem, we must guarantee the portfo-
lio is fully invested at every time t in any of the available assets and neither leverage
nor short selling is allowed. We decide to consider that the strategy does not receive
any new investment or withdrawal over time. Further, to consider the impact of
transaction costs in the portfolio problem, we specify ci as total trading costs (given
in percentage terms) associated to an order (buy or sell) of a given asset i and ui
corresponds to the asset i financial volume traded (u+

i for a buy order and u−i for a
sell order). In this case, the portfolio problem ∀t becomes

max
x∈Rn

n∑
i=1

R̂t,ixt,i, (3-14)

s.t.
N∑
i=1

Rt−j,ixt,i ≥ γWt−1,∀j = 1, ..., J (3-15)

xt,i = xt−1,i(1 +Rt−1,i) + (1− ci)u+
i − (1 + ci)u

−
i ,∀i (3-16)

u+
i ≥ 0, u−i ≥ 0,∀i (3-17)

n∑
i=1

u+
i −

n∑
i=1

u−i = 0 (3-18)

where xt,i ∈ R+,∀i. In the dynamic portfolio problem above we maximize the port-
folio daily estimated return (3-14) where each R̂t,i is calculated based on a mixed
signals estimation of asset i future return 1-step ahead. In the problem constraints
we define the loss restriction in (3-15). The portfolio observed returns for the past
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j days (where j = 1, ...J) should be greater than a predefined negative parameter
γ multiplied by the portfolio wealth for period t − 1, denoted by Wt−1. This loss
constraint must be satisfied for all past j days. The following problem constraint
(3-16) is necessary to guarantee that the portfolio is fully invested at any time period
t. This equation tells us that the financial exposure in each asset i at time t must be
equal to its financial exposure at time t− 1 corrected by its observed return during
day t− 1 (which is given by Rt−1,i) plus the financial traded volume in each asset i
at the begging of day t (which may be a buy order (u+

i ) or a sell order (u−i )) minus
the financial trading costs spent in each trade (which is given by ci(u+

i + u−i )). The
following equations (3-17) and (3-18) guarantee that the strategy does not receive
any new investment or withdrawal over time.

3.2.3.2 A Hedge Fund Problem (RA-HFP)

We might also use the general portfolio problem to model an adaptive hedge
fund13 decision problem, in which the fund manager may use advanced investment
strategies, such as leverage or short selling using financial derivatives (futures con-
tracts for instance) to generate high absolute returns with reduced risk, whether in
bull or bear markets. We consider a wealth maximization problem in which the
objective function is a linear combination of estimated future returns over deriva-
tives (R̂t,i) multiplied by its exposures (wt,i) plus estimated future returns over cash
equivalents (R̂t,c) multiplied by its position (xt,c).14 To allow for short selling and
leverage positions, we consider the existence of financial derivatives. As a typi-
cal hedge fund, this specification allows for exposures in derivatives (denoted by
wt,i ∈ R, where i = 1, ..., n15) as well as positions in cash equivalents (for simplic-
ity, denoted by a single cash equivalent xt,c ∈ R+). The hedge fund problem ∀t is
given by

max
xc∈R+,w∈Rn

[
R̂t,cxt,c +

n∑
i=1

R̂t,iwt,i

]
(3-19)

13 We will consider that this investment strategy might be called loosely as a hedge fund model
since we allow for more flexible investment strategies compared to the prior case study.

14 Being an investment fund, we consider the portfolio manager maintains the fund liquidity in-
vested in cash equivalents. Since the fund invests in derivatives, we consider that the corresponding
margin value blocked is corrected at the DI spot rate, considering that the fund can use government
bonds as eligible collateral.

15 Here n is the number of available derivatives
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s.t.
n∑
i=1

Rt−j,iwt,i ≥ γWt−1,∀j = 1, ..., J (3-20)

xt,c = Wt−1 −
n∑
i=2

ci(u
+
i + u−i ) (3-21)

wt,i = wt−1,i(1 +Rt−1,i) + u+
i − u−i ,∀i (3-22)

u+
i ≥ 0, u−i ≥ 0,∀i (3-23)

In this hedge fund problem we define the loss restriction as (3-20) since the
cash position return contribution is always a positive number (considering positive
interest rates in the economy). The derivatives portfolio observed returns for the past
j days (where j = 1, ...J) should be greater than a predefined negative parameter
γ multiplied by the portfolio wealth for period t − 1, denoted by Wt−1. This loss
constraint must be satisfied for all past j days. The following constraint (3-21)
is necessary to guarantee that the portfolio is fully invested at any time period t.
The constraint (3-22) tells us that the financial exposure in each derivative i at time
t must be equal to its financial exposure at time t − 1 corrected by its observed
return during day t − 1 (which is given by Rt−1,i) plus its financial traded volume
at the begging of day t (which may be a buy order (u+

i ) or a sell order (u−i )). To
model the trading costs (here we consider brokerage costs as well as slippage costs)
we consider they are paid using the fund cash equivalent. All exceeding resources
at time t are also invested in cash equivalents (3-21). Finally, the equation (3-23)
guarantees that the strategy does not receive any new investment or withdrawal over
time.

3.3 Case Study

In this section we intend to motivate the reader about the importance to con-
sider an adaptive robust model to generate higher returns while controlling for fi-
nancial losses. We investigate two different decision problems: the RA-AAP (ro-
bust adaptive asset allocation problem with no short selling nor leverage) and the
RA-HFP (robust adaptive hedge fund problem with leverage and short selling) and
compare the potential of the empirical adaptive robust formulation to generate ab-
solute returns with reduced risk in an out-of-sample evaluation.
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3.3.1 Case Study 1: An Asset Allocation Problem (RA-AAP)

Let us consider the example of a dynamic investment strategy, in which the de-
cision maker may decide how much to invest among three16 Brazilian asset classes,
namely:

· Brazilian interbank deposit rate (DI spot rate);

· Bovespa Index (BVSP index)17;

· Current exchange rate Brazilian Real to US Dollar (BRLUS currency).18

Data was obtained from Cetip and Bloomberg databases. We calculate discrete asset
returns19 based on daily price observations during the period of April 5, 2000 up to
May 31, 2013, comprising 3,257 observations. We implement a portfolio optimiza-
tion model considering realistic transaction costs applied to Brazilian securities20

and a management fee of 1% per annum, calculated on a daily basis over the back-
tested cumulative returns.21 The optimization model is implemented in Mosel and
solved using Xpress solver. Our objective is to compose a portfolio with the highest
daily return subject to a well controlled loss, in order to avoid huge losses during
crisis periods. We will adopt as our main benchmarks to compare to our model
performance the buy-and-hold strategies in each asset class. And being aware of
the well-known difficulties in beating the random walk forecast model (Meese and
Rogoff (1983a,b); Kilian and Taylor (2003)), our empirical out-of-sample analysis
will also consider this specification as a benchmark to test model predictability.

16 The resulting dynamic program does not suffer from the curse of dimensionality. As we spec-
ified our model as a linear optimization problem (with linear trasaction costs) it is quite simple to
solve it for portfolios of multiple assets.

17 The Bovespa index is a gross total return index weighted by traded volume and is comprised of
the most liquid stocks traded on the Sao Paulo Stock Exchange. Data was collected from the IShares
Ibovespa Index Fund - BOVA11 series.

18 The currency spot exchange rate.
19 as Rt = Pt

Pt−1
− 1.

20 It is assumed that the trading cost of Brazilian interbank deposit rate (DI spot) is null, but
its expected return considers a discount on the bond, a variation equivalent to 99.5% of actual DI
spot rate. The transaction costs for other assets consist of: exchange, settlement, registration and
permanence fees which are calculated as per BM&FBovespa methodology and brokerage fees by
trading volume and slippage costs. Slippage costs are defined as the difference between the expected
price of a trade and the price the trade is actually executed at. They usually occur during periods of
higher volatility. We decided to estimate future volatility using an EWMA (Exponentially Weighted
Moving Average) model for each asset class and evaluate the slippage cost as a percentage of this
estimated volatility. The execution cost incurs over the traded volume at each period of time.

21 An investment fund typically pays its investment manager an annual management fee, which is
a percentage of the assets of the fund.
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To analyze the empirical results obtained by the different specifications, we
will consider a metric of cumulative return given by

Rp,[1,T ] =
T∏
t=1

(1 +Rp,t)− 1 (3-24)

whereRp,t corresponds to the portfolio observed return between time t−1 and time
t. We will also consider a metric based on a risk-adjusted return index, which gives
some accuracy in measuring non-normality, specifically quantifying the tail risk in
the extreme, named the CVaR-Based Sharpe Ratio (see Lin and Ohnishi (2007)):

ICV aRα(Rp,t) =
1

| CV aRα(Rp,t) |

( 1

T

T∑
t=1

Rp,t

)
∗ 100 (3-25)

For continuous loss distributions, the CVaR at a given confidence level is the ex-
pected loss given that the loss is greater than the VaR at that level. In this work, we
calculate the CV aR95%(Rp,t) for the 95% confidence level, define it as a negative
number (loss) and give it in % per day (%pd).

We evaluate the optimal portfolio against benchmark strategies. We back-
test the mixed signal model against the random walk model22 and buy-and-hold
strategies in each asset class (DI spot rate, BRLUS currency and BVSP index). The
limit daily loss is set to -3% daily, during a period of J days (where J is assumed to
be equal to 45 trading days and B is equal to 20 trading days).

We present in Table 3.1 the comparative results for different time period
parameters used in the constructed signals Sigs,t,i that when combined, form our
mixed signals model. We use multiple built-in indicators to construct the final sig-
nal (return). Each signal considers two different time periods in its specification,
denoted by short term time period (KST ) and long term time period (KLT ), both
expressed in trading days.23 In the following table we depict the obtained out-of-
sample results for the portfolio model specified in (3-14 – 3-18) for some different
values of time periods (KST , KLT ) ∈ {(12, 26), (50, 100), (100, 150)} and a sample
period of 3,086 daily observations.

22 We chose to specify the random walk model without a drift component based on the stylized
fact that the volatility strongly dominates the mean for in financial time series of returns.

23 In this thesis we presented all the results implementing both the MSM in the objective function
as well as the empirical robust loss constraint. In a future work we distinguish the contribution of
the proposed MSM from that of the proposed empirical robust loss specification.
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Tab. 3.1: Comparative table varying parameters KST and KLT for different model specifi-
cations and sample period ranging from December 11, 2000 up to May 31, 2013,
comprising 3,086 daily observations.

 Cumulative 

Return 

 Annualized 

Average Return 
 CVaR I_CVaR

DI spot rate 408,4% 14,2% 0,00% -

BRLUS currency 8,7% 2,27% -2,49% 0,36

Model Specifications

Buy-and-hold 

strategies

BVSP index 257,1% 15,97% -4,21% 1,40

(12,26) 530,8% 18,02% -2,50% 2,63

(50,100) 774,0% 21,43% -2,65% 2,91

(100,150) 484,0% 17,54% -2,68% 2,39

108,2% 7,19% -2,03% 1,36Random walk (no drift)

Mixed signals 

model 

(KST,KLT)

From Table 3.1 one can notice that mixed signals models with empirical ro-
bust loss specified in (3-14 – 3-18) present superior cumulative returns for any val-
ues of KST and KLT when compared to both the random walk model and buy-and-
hold strategies. We found similar results for both the annualized average return
and the CVaR-Based Sharpe Ratio (I_CV aR95%(Rp,t)). By varying the values of
parameters KST and KLT we can generate different signals that when combined
generate a different input in the asset i return estimate and thus a different optimal
portfolio at each time t. This table depicts that for several values of KST and KLT

our model could produce superior returns and risk-adjusted returns, when compared
to selected benchmark strategies.

Figure 3.6 depicts the risk-return relationship among the strategies presented,
considering another metric for measuring risk. We plot the average daily return
on the vertical axis versus the volatility24 of daily returns on the horizontal axis.
Considering the existence of a risk-free asset (as the DI spot rate, for instance) one
can notice that the mixed signals model (with KST = 50, KLT = 100) exhibits the
highest Sharpe ratio25, when compared to both random walk and buy-and-hold risky
strategies.

24 Which is a frequently used risk measure by practitioners and calculated as the standard deviation
of daily returns.

25 This ratio measures the excess return per unit of standard deviation in an investment asset or a
trading strategy.
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Fig. 3.6: Risk-return relationship for different strategies and sample period ranging from
December 11, 2000 up to May 31, 2013, comprising 3,086 daily observations.
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Figure 3.7 depicts the cumulative performance evolution for the mixed signals
model with KST = 50 and KLT = 100 against the randow walk and buy-and-hold
strategies (DI spot rate, BRLUS currency and BVSP index).

Fig. 3.7: Cumulative performance evolution and sample period ranging from December 10,
2000 up to May 31, 2013, comprising 3,087 daily observations.
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The mixed signals model presents a consistent superior cumulative perfor-
mance when compared to both buy-and-hold strategies and random walk model.
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From Figure 3.7 it is worth mentioning some interesting feature of our model. Dur-
ing some severe crisis (as of 2008 Subprime crisis), as the observed returns for the
risky assets get more extreme and their dynamics change, the loss constraints get
active and the feasible region for the risky assets is reduced, indicating a higher al-
location in the risk-free asset. After some days the model starts to capture the new
dynamic of the dependence structure of asset returns and indicates an allocation to
risky assets once again. This seems to be a right decision as the model exhibits a
positive return in an out-of-sample analysis.

To check whether the superiority of our model is valid for the different mar-
ket periods over our sample, we consider the investor hold this strategy for different
time intervals and plot in Figure 3.8 trailing returns for several time intervals26 cal-
culated over daily observations. The trailing returns exhibit a higher frequency of
positive returns with a greater magnitude. Further, this behavior is even more pro-
nounced with an increase in the time interval considered.

26 For instance, annual trailing returns correspond to the cumulative returns obtained over a moving
window of 252 trading days.
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Fig. 3.8: Trailing returns for the mixed signals model considering several time intervals (6
months, 1 year, 2 years, 3 years) and γ = −3% and sample period ranging from
December 11, 2000 up to May 31, 2013, comprising 3,086 daily observations.
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We can observe a similar result from Table 3.2. This table depicts the propor-
tion of positive excess returns of the mixed signals model compared specifically to
a buy-and-hold strategy in the Bovespa index (BVSP index). Despite the average
positive excess returns for the proposed model is inferior to the Bovespa index, its
average negative excess returns is much smaller, what guarantees a superior cumu-
lative performance and evidences its potential to control for higher losses.
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Tab. 3.2: Comparative table for trailing returns (for the mixed signals model and a buy-
and-hold strategy in the BVSP index) in different time intervals and sample period
ranging from December 11, 2000 up to May 31, 2013, comprising 3,086 daily
observations.

Time interval
 Mixed 

signals model 
 BVSP index 

 Mixed 

signals model 
 BVSP index 

 Mixed 

signals model 
 BVSP index 

3 years 72% 58% 36% 70% -13% -30%

2 years 62% 56% 29% 47% -11% -32%

1 year 58% 53% 18% 30% -10% -25%

6 months 56% 49% 12% 19% -8% -16%

%Proportion of positive 

excess returns

Average positive excess 

returns

Average negative excess 

returns

Figures 3.6, 3.7 and 3.8 suggest that our mixed signals model with empirical
robust loss presents a superior performance when compared both to the buy-and-
hold strategies and random walk model. This could be explained as follows. Firstly,
our asset classes exhibit a clear varying pattern in their relationships, during the
time period under analysis. As the relationship between asset classes vary, it is
desirable an adaptive model to capture this dynamics. The proposed specification
(3-14 – 3-18) considers this dynamic in the decision process, both in the objective
function (return forecasts) and in the constraints (returns dependence).

Another important feature of the model is its adaptive robust loss function.
The following figures 3.9, 3.10 and 3.11 depict feasible regions for the portfolio
weights (%) in each asset class to give further evidence of its behavior during dif-
ferent market conditions. We plot the portfolio weights (%) in BRLUS currency on
the horizontal axis versus the portfolio weights (%) in BVSP index on the vertical
axis. The feasible regions generated by the problem constraints are plotted in blue.
A proper interpretation of these figures enables the reader to better grasp the ability
of our model in capturing the evolving dynamics among different asset classes and
market conditions.

Figure 3.9 depicts the feasible region of the % weights in the US dollar and
the Bovespa index, during a crisis period. More specifically it was generated con-
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sidering the portfolio allocation in October 2008.27 By varying the parameter J
which controls for the robust loss constraint, we can observe the existence of differ-
ent feasible regions for the portfolio allocation. In Figure 3.9 we let the parameter
J assume the following values J ∈ (1, 5, 20, 50) trading days. For instance, in our
specification when J = 5 we have 5 different constraints (one for each day) re-
sulting from equation (3-15) whilst for J = 50 we have 50 different constraints,
resulting from equation (3-15). One can note that as J assume higher values, the
umbrella constraints make the feasible region smaller.28 As a result, since the in-
vestor must be fully allocated, one can notice that the resulting allocation will move
towards the risk-free asset, the DI spot rate (which may be understood as being in
the third dimension of this two-dimensional plot).

27 The financial subprime crisis started in earnest after Lehman’s failure in mid September 2008
and saw its sharpest decline in October.

28 The umbrella constraints are defined in Ardakani and Bouffard (2013) as those constraints which
are both necessary and sufficient to describe the feasible set of an optimization problem.
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Fig. 3.9: Feasible region of the percentage portfolio weights in each asset class (plotted in
blue) for the robust optimization problem considering two risky assets (BRLUS
currency and BVSP index) and one risk-free asset (DI spot rate) available for
investment - varying the parameter J
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In Figure 3.10 we can check the effect of parameter γ in our portfolio problem.
One can compare the behavior of feasible regions for risky asset classes, if we let
γ take different values. If we first let γ take the value of −3% and then change
this value to −1%, one can note that the risky asset classes allocation experiences a
sharp decrease. The model solution tells the investor to switch part of her resources
to the risk-free asset. Our model seems to be effectively sensitive to the predefined
investor risk aversion parameter, namely γ.
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Fig. 3.10: Feasible region of the percentage portfolio weights in each asset class (plotted in
blue) for the robust optimization problem considering two risky assets (BRLUS
currency and BVSP index) and one risk-free asset (DI spot rate) available for
investment - varying the loss parameter γ
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Figure 3.11 depicts a collection of snapshots for the feasible regions for risky
asset classes, considering different time periods, which include bull and bear mar-
kets. We can notice that during crisis periods (as of subplots of October 2008 and
August 2011) the feasible regions for risky asset classes get tighter as the loss con-
straints get active and thus we have a move towards an allocation to the risk-free
asset.
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Fig. 3.11: Feasible region of the percentage portfolio weights in each asset class (plotted in
blue) for the robust optimization problem considering two risky assets (BRLUS
currency and BVSP index) and one risk-free asset (DI spot rate) available for
investment - different market conditions.
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To investigate the decision making process implemented by our model, we
recall Figure 3.4 where we plotted the risky asset returns in two specific periods
(which we call crisis (October, 28th, 2008) and non crisis periods (June, 15th, 2007).

During the 2008 crisis period, the risky assets exhibited extreme negative re-
turns. Simultaneously, one can observe from Figure 3.11 (in June, 15th, 2007 and
October, 28th, 2008 subplots) that the empirical robust loss specification is able to
treat this dynamic behavior as market conditions change. As expected, after big
negative movements, the feasible region of the % weights in risky assets gets grad-
ually smaller and the optimization model shifts the optimal allocation towards the
risk-free asset.

It is well known that robust portfolios do exhibit a non-inferiority property
(see Ben-Tal et al. (2006)). Whenever the asset returns are realized within the pre-
scribed uncertainty set, the realized portfolio return will be greater than or equal
to the calculated worst-case portfolio return. Nevertheless this property may fail
to hold when the asset returns happen to fall outside the uncertainty set. When a
rare event (such as a market crash) occurs, the asset returns can materialize far be-
yond the uncertainty set, and hence the robust portfolio will remain unprotected.
A simple way to overcome this problem is to enlarge the uncertainty set to cover
also the most extreme events. However, this can lead to robust portfolios that are
too conservative and perform poorly under normal market conditions. We decided
to consider the existence of a risk-free asset in our portfolio selection problem to
check if our model would decide to allocate in this asset when risky assets exhibits
returns beyond the predefined uncertainty sets. This pattern could be also verified
in Figure 3.7 (during 2008 financial crisis and also during the year of 2011, our
optimal portfolio shifts its optimal allocation from risky asset to the risk-free asset).

In the sequel we investigate the cumulative performance of our mixed signals
model with robust loss specification by plotting the optimal time-varying portfolio
composition in each asset class in Figure 3.12.
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Fig. 3.12: Dynamic asset allocation vs cumulative performance evolution (MSM Emp Loss
γ = −3%) - sample period: Dec 10, 2000 - May 31, 2013: 3,087 daily observa-
tions.
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One can notice that when both risky assets present a downtrend, the model
chooses to be allocated in the risk-free asset (as short selling is not allowed). This
is verified specially during the year of 2011 when both risky assets were decreasing
in value. The same behavior is observed for other high volatility periods (as of late
2008). This is the effect of using the proposed specification to model the portfolio
loss. Another interesting result is noticed when optimal resulting allocation in the
BRLUS is increased just after 2008 financial crisis and late 2011. The proposed
MSM seems to produce signals which are well captured by the portfolio model.
This is also true for periods 2001 and late 2002. On the other hand, from 2004 to
2008, during a downtrend movement in the BRLUS our model does not suggest
any relevant allocation in this class. A similar analysis can be made for the BVSP
asset class. The model seems to capture the up trend movements, whereas controls
for the loss of the strategy. Specifically we can observe that the strategy suggests
allocation in equity class during the upward movement from 2003 to mid 2008.
During the severe crisis of 2008, the model quickly reverts this exposure and reduces
its allocation in equities drastically. A similar behavior is observed during the year
of 2011.

Despite being a fairly realistic portfolio optimization algorithm (as it consid-
ers real transaction costs and investment fees29), this first case study is limited as

29 We understand that our transaction costs model has its limitations as it considers the trading
costs incurring over financial traded volume and not over the number of contracts. Also, we did not
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it does not allow for short selling or leverage positions, which are quite common
in the Brazilian financial markets. Encouraged by preceding evidences, in the next
subsection we investigate a more flexible portfolio experiment in what concerns its
investment strategies and instruments.

3.3.2 Case Study 2: A Hedge Fund Problem (RA-HFP)

Allowing for exposure in derivatives (specifically futures contracts) poten-
tially increases the dynamic strategy risk profile as leverage can be enhanced and
short positions allowed. We investigate the model behavior in an out-of-sample ex-
ercise considering a hedge fund strategy applied to the Brazilian financial market.
The manager may decide to invest (long or short) in some different asset classes,
represented by the following linear derivatives30, namely:

· U.S. Dollar Futures Contract (BRLUS fut);31

· Ibovespa Futures Contract (BVSP fut);

· Gold Futures Contract (Gold fut);32

· Brazilian one-day Interbank Deposit Futures Contract (DI fut);33

We also consider the existence of a risk-free asset (cash equivalent), namely the
Brazilian interbank deposit rate (DI spot rate). The hedge fund manager might
decide whether to invest in any of the derivatives listed above or to just keep the cash
invested in the DI spot rate. Data was collected from Cetip and Bloomberg systems.
We calculate discrete asset returns based on daily price observations during the
same sample period (as of April 5, 2000 up to May 31, 2013, comprising 3,257

carry a study over market depth as we consider a case study in most liquid asset classes in Brazil.
The same is true for investment fees, as we decide to consider just the existence of management fee.
Portfolio managers may also charge incentive fees on performance over selected benchmarks.

30 In this case study, we model the portfolio problem to allow trading in futures contracts. For
Ibovespa Futures Contract and U.S. Dollar Futures Contract we consider the maturity which was
the most liquid for each day and for the Brazilian one-day Interbank Deposit Futures Contract we
consider the 1 year maturity.

31 Exchange rate of Brazilian Reais (BRL) per US Dollars for cash delivery, according to the
provisions of Resolution 3265 of 2005 of the National Monetary Council (CMN).

32 Gold in bars, cast by a refiner and kept in a depository institution, both accredited by
BM&FBovespa.

33 Interest rate effective up to the contract expiration date, defined as the capitalized daily Interbank
Deposit (DI) rates verified on the period between the trading day and the last trading day of the
contract. It is quoted as effective interest rate per year, based on 252 business days, to three decimal
places. In the following study we work with price numbers, as we converted the collected rates.
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observations). We implement a hedge fund optimization model considering realistic
transaction costs applied to Brazilian derivatives and a management fee of 1% per
annum, calculated on a daily basis over the back-tested cumulative returns.34 The
optimization model is implemented in Mosel and solved using Xpress solver.

To line up with Brazilian hedge funds with different risk profiles, we calcu-
late the optimal dynamic allocation for several daily percentage loss parameter val-
ues γ = {−0.10%,−0.15%,−0.20%,−0.30%,−0.50%,−1%}. Table 3.3 depicts
the annualized values for average return and volatility as well as tail loss measure
(CVaR) and maximum exposures (for long and short positions).35

34 Transaction costs for derivatives are calculated as per BM&FBovespa methodology and broker-
age fees by trading volume and slippage costs. All execution cost incurs over the traded volume
at each period of time. As we consider that the fund might invest in derivatives, we consider that
the corresponding margin value blocked is corrected at the DI spot rate. To ensure the optimization
of the investors resources, BM&FBOVESPA corrects the margin value during the period that the
margin was blocked at a rate close to the DI spot rate (considering that investors can use Brazilian
government bonds as eligible collateral). The margin required is the minimum amount the partic-
ipant must maintain deposited at the clearinghouse to guarantee the settlement of the obligations
resulting from the transactions assigned to her. To replicate a typical Brazilian hedge fund strategy,
we consider a management fee of 1%per annum.

35 We let the model vary the exposure in derivatives in the range -100% up to +100% of the funds’
net asset value (nav). For the DI future which exhibits a lower volatility level, we let the model vary
the exposure from -400% up to +400% of the funds’ nav.
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Tab. 3.3: Comparative table varying the loss parameter γ.
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Comparing the optimal portfolios results36 one can notice that from both ex-
post risk measures (as of volatility and tail loss (CVaR) values), we can verify that
varying the loss parameter can effectively control the risk assumed by the strategy.
This is also verified by the difference in magnitude between maximum exposures
(long or short). Further, for all values of γ the model let the maximum short ex-
posure be smaller or equal to the maximum long exposure. This is in line with
our intuition that short positions are riskier than long ones.37 We complement this
analysis by plotting in Figure 3.13 the risk aversion parameter γ by some realized
measures, such as average return, volatility and tail loss (CVaR).

36 We set the parameter J to 45 trading days and robust parameter B to 20 trading days.
37 The outcome of a short sale is basically the opposite of a regular buy transaction, but the me-

chanics behind a short sale result in some unique risks. In a short position, losses can be infinite
while the upside is limited. When the price moves against the trade, the trade exposure in fact
increases in value what enhances the assumed risk.
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Fig. 3.13: Risk aversion parameter γ versus optimal portfolios’ measures.
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Those graphs present some evidence that by varying the value of γ in the
problem setup, it is possible to obtain optimal portfolios that exhibit more stable risk
levels over time. We found direct relationships among the risk aversion parameter
γ with optimal portfolios’ risk measures (volatility and CVaR). It is possible to
obtain any desired level of risk by choosing the appropriate value for γ. Another
interesting result is given by the optimal portfolios’ average returns and the risk
aversion parameter. As expected, we find evidence of a positive risk-return trade-
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off.38

In Figure 3.14 we plot the risk-reward relationship among the optimal portfo-
lios varying the loss parameter. Considering the existence of a risk-free asset (as the
DI spot rate, for instance) one can notice that the optimal (mixed signals models)
portfolios, with various values for γ, exhibit higher Sharpe ratios when compared
to buy-and-hold risky strategies.

Fig. 3.14: Risk-return relationship varying the loss parameter γ.
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To further evaluate the model against available benchmarks, we compare our
model to the ANBIMA’s Hedge Fund Index - IHFA (a hedge fund index based on
the evolution of a portfolio composed of selected funds that represent the Brazil-
ian hedge funds sector calculated by ANBIMA - Brazilian Financial and Capital
Markets Association).39

Figure 3.15 depicts the cumulative performance for two selected optimal port-
folios (with γ = (−0.15%,−0.20%) ) against the DI spot rate and the IHFA index.
We chose those two portfolios based on their risk measures that were very close
to that of the IHFA. Our model presents a superior cumulative performance when
compared to both the DI spot rate40 and the industry benchmark - IHFA (hedge fund

38 Which is the balance between the desire for the lowest possible risk and the highest possible
return.

39 Website:http://www.andima.com.br/ihfa
40 Usual benchmark for hedge funds in the Brazilian fund industry.
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index).

Fig. 3.15: Cumulative performance for selected mixed signals models.
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Further, to check whether this evidence is valid for the different market peri-
ods over our sample, we consider the investor hold this strategy for different time
intervals and plot in Figure 3.16 trailing returns for several time periods for the
proposed model with a conservative risk profile (in which γ = −0.20%). The plots
show an interesting consistency in returns. For any investor that keeps her resources
allocated in this strategy for at least 1 year, she receives a minimum return of 8%,
what seems in line with a conservative risk profile. Also we can observe from this
plot that the proposed model exhibits a higher frequency of positive returns when
compared to the IHFA benchmark. And this behavior is even more pronounced with
an increase in the time interval considered.
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Fig. 3.16: Trailing returns for the mixed signals model vs IHFA considering several time
intervals (6 months, 1 year, 2 years, 3 years) and γ = −0.2%.
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We plot the optimal time-varying portfolio composition41 in the selected deriva-
tives in Figure 3.17. In this case study, as we allow for leverage and short selling,
those graphs get even more interesting to analyze (when compared to Figure 3.12).

41 For the model with γ = 1%.
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Fig. 3.17: Dynamic portfolio allocation against cumulative return in selected derivatives.
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In the first graph of Figure 3.17 we plot the dynamic optimal allocation in the
BRLUS fut on the left vertical axis (plotted in blue) against its cumulative return on
the right vertical axis (plotted in black). One can notice that during an upward trend
in 2001 the model carries a long position in this derivative. In late 2001 it reverts its
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exposure and carries a short position until this downtrend is finished. This behavior
is also true for the down trend from 2004 to 2008, during which it carries a short
position for a long period of time. Later, during the financial crisis of 2008, the
model rapidly captures the steep upward trend. More recently, during late 2012 and
early 2013, specific up movements were well captured by this mixed signal strategy.
In the second graph of Figure 3.17 we plot the dynamic optimal allocation in the
BVSP fut on the left vertical axis (plotted in blue) against its cumulative return on
the right vertical axis (plotted in black). A similar analysis can be made from its
dynamic optimal allocation and ex-post cumulative performance. The model seems
to capture the up trend movements, whereas controls for the loss of the strategy.
For instance, we can observe that the strategy carries a high short exposure during
the year of 2011 position, which seems to be a good decision. In the third graph
of Figure 3.17 we plot the dynamic optimal allocation in the Gold fut on the left
vertical axis (plotted in blue) against its cumulative return on the right vertical axis
(plotted in black). The model seems to capture the up trend movement from late
2008 up to mid 2011; one can argue that Gold fut increased in value during those
high volatility periods since it is typically considered a “safe haven”42. Further, it is
interesting to notice that, on average, the model indicates a lower exposure to BVSP
fut and Gold fut when compared to the BRLUS fut. This seems to be in line with
the pre-specified risk aversion parameter, as both BVSP fut and Gold fut present a
higher volatility level. From the last graph of Figure 3.17 we can investigate the
model dynamic allocation in the DI fut.43 The model indicates, during the year
of 2004, a short exposure in this derivative.44 A short position in the price of a
bond is equivalent to a long position in interest rates. And indeed this was a very
profitable strategy as interest rates in Brazil experienced an up trend during this
period of time. Later, during the 2008 crisis, the model experiences a short period
of maximum long exposure in this derivative (which is equivalent to short interest
rate). This was also a successful strategy as during this time the government reduced
its short term interest rate. A similar behavior is verified for the second semester
of 2011. In summary, we found evidence of a dynamic behavior in the selected
derivatives. The model seems to capture time-varying patterns both for up trends
and down trends, while control for portfolio losses considering each derivative risk

42 An investment that is expected to retain or even increase its value in times of market turbulence.
43 We considered the evolution of a buy-and-hold allocation in the bond (its price evolution).
44 As traded in Brazilian markets, when we carry a long position in the bond it is equivalent to be

short in interest rates.
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contribution to the portfolio total risk.
To analyze the evolving dynamics among the risky derivatives and the way

the model captures and treats those relationships we present some ex-ante and ex-
post numbers in Figure 3.18. We illustrate on the left side the risky derivatives daily
returns (ex-ante) considering two different market conditions (crisis and non crisis
periods)45 and on the right side the optimal ex-post allocation in each risky asset.

45 For the crisis period, t refers to October, 28th, 2008 and for the non crisis period, t refers to
June, 15th, 2007.
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Fig. 3.18: Dynamic portfolio allocation in selected derivatives during crisis and non crisis
periods - observed returns as inputs and optimal allocation as results.
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The first graph on the left side depicts a scatter plot of the BRLUS fut daily
returns on the horizontal axis versus the BVSP fut daily returns on the vertical axis.
We plot in blue the daily returns for the non crisis and in red the daily returns for the
crisis period. The first graph on the right side plots the optimal allocation decision
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(ex-post) during a non crisis period, a transition period and a crisis period for both
derivatives (BRLUS fut in gray and BVSP fut in black). During non crisis periods,
the relationship between them seems to be stable over time. When it comes to
transition and crisis period, the optimal allocation decision significantly changes,
what suggests the adaptive robust model can capture this varying pattern in the
relationship. A similar analysis can be made for the following graphs in Figure
3.18.

The empirical results of the investigation reported in this paper suggest that
both adaptive (asset allocation and hedge fund) robust optimization models yield
potentially cost effective optimal portfolios across assets and time periods. Evi-
dence suggests that the proposed adaptive robust formulation provides significant
risk protection while outperform selected benchmark strategies.

3.4 Concluding Remarks

Robust portfolio optimization has emerged over the last decade as a tractable
and insightful approach to decision-making under uncertainty. In this paper we
present an adaptive robust asset allocation problem focused on linear programming
and polyhedral uncertainty sets (connected to the decision-maker’s attitude towards
risk). We set the objective function as an adaptive mixed signals strategy and dis-
cuss two case studies to investigate the feasibility of the solution. Despite being a
simpler formulation46, the first case study offered some important insights on the
use of adaptive strategies and the evolving dynamics among asset classes returns
in the Brazilian market. As a further step towards practical implementation in the
second case study we allowed for short selling and leverage in selected asset classes
which are quite common in hedge fund optimization algorithms. We calibrated the
position maximum size in each asset class, varying the risk aversion input parameter
γ. This parameter was effective to control for the observed volatility of each strat-
egy. Evidence suggests that it is possible to obtain higher returns when compared
to benchmark strategies (naive, buy-an-hold, etc) considering both conditional mul-
tivariate probability distribution of returns and transaction costs. Out-of-sample
results indicate that the applied RO specification, in particular, could better control

46 One important common feature of our specifications is that they can be solved with available
linear programming software, yet they allow for flexible formulations in which the anticipation of
future expected returns, as well as a tolerance level for the error in forecasts, can be explicitly
modeled.
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the risk and enhance the performance of portfolio optimization methods. Hence we
believe both robust adaptive data-driven models provide a interesting alternatives to
traditional portfolio problems under uncertainty.
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4
Paper 3: A Robust Portfolio Model based on
Bertsimas & Sim Approach

4.1 Introduction

Robust optimization models have played a major role in real portfolio prob-
lems, providing a powerful tool to solve the sensitivity issue of the classical mean-
variance models. Robust optimization (RO) techniques are best applied where pa-
rameter values are unknown and their distributions are uncertain since they allow
portfolio managers to incorporate estimation errors directly into the portfolio op-
timization problem. In this framework, the perturbations in the parameters are
modeled as unknown, but bounded, and optimization problems are solved assuming
worst case behavior of these perturbations.1 The uncertainty model is not stochastic,
but rather set-based and the decision maker can construct a solution that is optimal
for the worst-case realization of the uncertainty in a given set.2

The earliest studies on robust optimization date back to the early 1970s, when
Soyster (1973) proposed the first robust model for linear optimization problems
with uncertain data. The resulting model was known to be very conservative in the
sense that it gives too much of optimality for the nominal problem in order to ensure
robustness. Much later, only in the 1990s, the optimization community revived the
interest in robust formulations and a number of important robust formulations and
applications followed. Ben-Tal and Nemirovski Ben-Tal and Nemirovski (1999,
2000) as well as Ghaoui and Lebret Ghaoui and Lebret (1997); Ghaoui et al. (1998)
provided detailed analysis of the robust optimization framework in linear optimiza-
tion and general convex programming. Their papers pointed out that the approach
originally proposed by Soyster (1973) results in robust solutions that exhibit an ob-
jective function value much worse than that of the nominal problem as it protects
against the worst-case scenario which may not be meaningful for decision-making
process. To address this issue they propose less conservative models by considering
uncertain linear problems with ellipsoidal uncertainties, which involve solving the
robust counterparts of the nominal problem in the form of conic quadratic prob-

1 The robustness of a solution is given by its ability to remain feasible with respect to data changes.
2 Under RO, modelers agree to accept a suboptimal solution for the nominal values of the data, in

order to ensure that the solution remains feasible and near optimal when the data change.
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lems. However, a practical drawback of their approach is that it leads to nonlinear,
although convex, models, which are more demanding computationally than the ear-
lier linear models by Soyster Soyster (1973).

Since then other authors have been working on alternative solutions that could
reduce the conservatism of the solution (also known as the price of robustness3).
Bertsimas and Sim (2004) proposed an alternative method to control for the level of
conservatism of the solution while retaining the advantages of the linear framework
introduced by Soyster. They designed the problem to protect against the violation
of a specified constraint j deterministically, when only a predetermined number Γj

(also known as budget of uncertainty) of coefficients change. Furthermore, their
reasoning guarantees that not only the solution is feasible if less than Γj of coef-
ficients change, but also it is still feasible with high probability even if more than
Γj of coefficients change. In fact, the robust optimization ( RO) methodology has
been used to various applications (see Ghaoui et al. (2003); Goldfarb and Iyen-
gar (2003); Pinar and Tutuncu (2005); Ben-Tal et al. (2006); Bertsimas and Thiele
(2006); Bertsimas and Pachamanova (2008); Bertsimas and Brown (2009); Gregory
et al. (2011)). A recent comprehensive survey of theory and applications of RO is
discussed in Gabrel et al. (2013).

In this work we provide an extension of Bertsimas and Sim (2004) approach
to model uncertainty sets within the framework of robust optimization for linear
optimization problems with uncertain parameters. Our model considers adaptive
polyhedral uncertainty sets based on two deterministic parameters to control for
the level of protection of the solution. The proposed uncertainty sets are defined
as dynamic sets described by a historical covariance structure of returns calculated
over moving windows, in which no more than a predetermined number Γ of assets
could change simultaneously from a given dynamic estimated nominal value. This
method seems efficient to adjust the robustness of the problem against the level of
the conservatism of the solution. We then evaluate the behavior, robustness and cost
of the robust counterpart formulation of a portfolio optimization problem in which
unknown parameters are modeled by this predefined polyhedral data-based set. Our
model specification is designed to be robust to changes in market conditions both
in the problem constraints as in the objective function (we develop a nonparametric
adaptive weighted sum method for the objective function of our sample problem

3 Bertsimas and Sim (2004) introduced this concept which considers how “heavily” the objective
function value is penalized when we are guarded against objective under performance or constraint
violation.
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which uses several standard parameter look-backs for estimation).

4.2 A Robust Adaptive Portfolio Model based on Bertsimas &
Sim approach

Bertsimas and Sim (2004) propose a robust formulation that is linear and is
able to withstand parameter uncertainty without excessively affecting the objective
function and readily extends to discrete optimization problems. They begin con-
sidering the following general robust formulation of a discrete linear optimization
problem. Let c, l,u be n-vectors, let A be a (j × n) matrix and b be j-vector. The
problem is given by

max
x∈<n

c′x

s.t.

Ax ≤ b

l ≤ x ≤ u

∀A ∈ Ξ

(4-1)

where x is the vector of decision variables. Hereafter, it is assumed that data uncer-
tainty only affects the elements in matrix A.

Bertsimas and Sim (2004) introduced a concept of budgeted robust counter-
part, relaxing the condition that the optimal solution must be feasible ∀A ∈ Ξ under
the assumption that not every parameter would take its worst-case value simultane-
ously. For that they motivate the formulation as follows. They consider a specific
jth row of the uncertain matrix A with the jth constraint of the nominal problem
a′jx ≤ bj and let Ij represent the set of coefficients in this row that are subject to pa-
rameter uncertainty. For every j, they introduce a parameter Γj , which can take any
real value in the interval [0, |Ij|]. This parameter is used to adjust the robustness of
the proposed method against the level of conservatism of the solution (as the value
of Γj affects the structure of Ξ) . The problem is designed to protect against the
violation of a specified constraint j deterministically, when only a predetermined
number Γj of coefficients change.4 The solution would be feasible just for some

4 We can understand |Ij | as the cardinality of set Ij . If Γj is integer it is interpreted as the
maximum number of parameters that can deviate from their nominal values. When Γj is not an
integer it indicates that it can vary up to a fraction of a given asset.
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A ∈ Ξ as its goal is to be protected against all cases that up to Γj of these coeffi-
cients are allowed to change. In this robust optimization framework, the true value
aj of an uncertain parameter, is given by

aj = āj + âjej, ∀j (4-2)

where āj is a statistical estimate of the expected value of aj , âj is a statis-
tical estimate of the maximum distance that aj is likely to deviate from the point
estimate āj and ej is a random variable which is bounded by and symmetrically dis-
tributed within the interval [−1, 1]. Bertsimas and Sim (2004) modeled uncertainty
by budgeted polyhedral uncertainty sets

ΞΓ =
{
e ∈ Rn|

∑
j

|ej| ≤ Γ, −1 ≤ ej ≤ 1,∀j
}

(4-3)

Let us present the linear robust counterpart to the portfolio optimization prob-
lem, where the robustness is specified in the objective function. The basic portfolio
problem is defined as

max
x∈<

∑
i

Rixi

s.t.∑
i

xi = 1

xi ≥ 0,∀i

(4-4)

where the asset returns Ri are uncertain parameters with unknown distributions
defined as bounded and symmetric with respect to a point estimate R̄i.5 Let ei
be a stochastic variable that measures the deviation of parameter Ri from R̄i and
takes values in [−1, 1] being ei = (Ri−R̄i)

σi
, where σi is the standard deviation of Ri.

Rearranging this equation we can express Ri as

5 They assume that even though the true distribution ofRi is unknown, historical data can be used
to estimate the mean return of asset i.
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Ri = R̄i + σiei (4-5)

Let |I| be the number of parameters Ri that are uncertain. Bertsimas and Sim
(2004) define Γ as a parameter of budget of uncertainty, which is the number of un-
certain parameters that take their worst case value R̄i−σi for xi ≥ 0. Therefore they
define

∑n
i=1 |ei| ≤ Γ, such that Γ ∈ (0, |I|). Rewriting the portfolio optimization

problem substituting (4-5) in (4-4) we get

max
x∈<

∑
i

(R̄ixi + σieixi)

s.t.∑
i

xi = 1

xi ≥ 0,∀i

(4-6)

The second term of the objective function can be written as

−min
f
σifixi

s.t.

0 ≤ fi ≤ 1 : zi,∀i∑
i

fi ≤ Γ : l

(4-7)

where zi and l are the dual variables associated to the problem. By duality this
corresponds to the problem

−max
zi,l

(lΓ +
∑
i

zi)

s.t.

l + zi ≥ σixi,∀i

zi, xi ≥ 0,∀i

l ≥ 0

(4-8)
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Substituing this result in (4-6) we can get the following robust optimization problem

max
x∈<

∑
i

R̄ixi − λΓ−
∑
i

zi

s.t.∑
i

xi = 1

λ+ zi ≥ σixi,∀i

λ ≥ 0

xi, zi ≥ 0,∀i

(4-9)

The robust counterpart of an uncertain optimization problem has as objec-
tive to optimize the worst-case performance. Soyster (1973) and Ben-Tal and Ne-
mirovski (1999, 2000) models stipulate that every constraint must be feasible for
every uncertain parameter defined within a bounded symmetric set (every uncertain
parameter taking its worst case value). Bertsimas and Sim (2004) introduce a model
that assumes at most Γ uncertain parameters will take their worst case values and
not every parameter. In problem (4-9) one desires the portfolio with the best worst-
case return given that Γ asset returns take their worst case values, R̄i − σi, xi ≥ 0.
As a result, this formulation provides optimal portfolios less conservative in the
sense that its objective function is not too penalized.

Following the above formulation, we describe the discrete-time model6 we
use for asset return dynamics and formulate the optimal investment problem in its
terms.

Let us consider a dynamic wealth maximization problem subject to an adap-
tive robust portfolio loss and budget constraints ∀t given by

max
x∈<n

R̂′txt,

s.t.

L(Rt,xt) ≤ ε1

B(Rt−1,xt,xt−1, ct) ≥ ε2

(4-10)

where n is the number of available assets, R′t = (Rt,1, Rt,2, ..., Rt,n) is the vector

6 In discrete time models the asset return dynamics are primarily governed by a rule that dictates
how the price or return changes from one period to the following one.
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of asset returns, xt
′ = (xt,1, xt,2, ..., xt,n) is the vector of decision variables (where

each xt,i corresponds to the financial asset allocation in asset i to be executed at the
beginning of day t)7 and n is the number of available assets. The loss constraint
function is denoted by L(.) and the budget function is denoted by B(.).

The adaptive forecast for future asset return i at time t is given by signal R̂t,i.
We assume a mixed signals model to predict future asset returns which dynami-
cally selects the signal that performs better, considering an out-of-sample analysis
(as described in (3-4) and (3-5)). A detailed formulation for the built-in signals is
provided in Appendix.

In (4-10) the loss function is given by L(.) which is a general loss function
that depends on past observed returns and the decision vector xt which should be
greater than a negative scalar ε1. Our loss specification is built on Bertsimas and
Sim (2004) and uses historical-covariance data to determine the portfolio loss limits
whilst considering the investor risk tolerance. Furthermore we define the budget
functionB(.) considering the existence of transaction costs.8 This function depends
on both past returns Rt−1 and decision vector xt and also on transaction costs ct at
time t.

Under this general formulation the decision-maker constructs a solution that
is optimal for any realization of the uncertainty in a given set. In the sequel, we
outline the proposed approach to construct the uncertainty sets based on Bertsimas
and Sim (2004).

4.2.1 Covariance-based Adaptive Robust Loss Function

We propose a covariance-based robust loss function specification to describe
the associated polyhedron for the problem constraints. This robust problem is stud-
ied with respect to the robust framework of Bertsimas and Sim (2004) to model
optimization problems with data uncertainty.

The proposed model assumes uncertainty in the problem constraints. There-
fore, it is somehow different from the simple portfolio problem (4-9) which assumes
uncertainty in the objective function.

Let us assume there exists only one row j in the uncertain matrix A (see
(4-1)). Each row entry ai, i ∈ I is assumed to be an asset return which can be

7 We assume the investor allocates all her wealth at each time t. For that, the mixed signals model
consider past signals up to time t− 1 to forecast the return at time t.

8 A detailed specification for transaction costs is provided in the Appendix.
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modeled as a symmetric and bounded random variable (Ri, i ∈ I) and take values
in [µi − ησ̂iei, µi + ησ̂iei]. The parameter µi is the mean or expectation of the
distribution and the parameter σ̂i is its estimated standard deviation. We use the
parameter η to address one specific aspect of our uncertainty set: its scale. In fact,
there are two main aspects of uncertainty sets, named structure and scale. As we
will see hereafter, in terms of structure we consider polyhedral uncertainty sets (and
by changing Γ will change the number of bounds, which define the polyhedron).
And in terms of scale we introduce a new factor named η to redefine our uncertain
parameter Ri.9

Let us assume the following conditional distribution for n−asset returns in
period t:

Rt = µt + ηGte, (4-11)

where Rt is the (n × 1) vector of asset returns in period t10 and µt is the
(n × 1) vector of conditional expected returns estimated for period t. The scalar
η which multiplies each element of the triangular matrix Gt is used to calibrate
the tolerance interval for the robust loss constraint. The lower triangular matrix
Gt (n × n) results from the Cholesky factorization of the conditional covariance
matrix of returns estimated for period t (Σt = GtGt

′). The matrix Gt introduces
a conditional dependency in the asset’s returns. Finally, let e denote the (n × 1)

vector of random variables defined in the uncertainty set ΞΓ

ΞΓ =
{
e|

n∑
m=1

|em| ≤ Γ, −1 ≤ em ≤ 1,∀m
}

(4-12)

We understand it is unlikely that all of the uncertain parameters Ri, i ∈ I

will change at the same time to adversely affect the solution. Therefore, we will
use this method to stipulate deterministically how many coefficients could change
simultaneously and analyze how we can protect our portfolio results against all
cases up to Γ of these coefficients are allowed to change. Note that when Γ = 0 none
of the uncertain parameters take their worst-case value; thus, the budgeted robust
counterpart is similar to the non-robust nominal problem and there is no protection
against uncertainty. When Γ = |I|, all of the uncertain parameters take their worst-

9 While the parameter σ̂i tells us how Ri deviates from the point estimate µi the scale factor tell
us by how much it deviates.

10 A random variable.
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case value; thus, the solution must be feasible ∀e ∈ ΞΓ and the model converges
to the Soyster method, which yield a very conservative solution. Therefore, by
allowing Γ ∈ [0, |I|] the decision-maker makes a trade-off between the protection
level of the constraint and the degree of conservatism of the solution.

As we want to guarantee that the optimal portfolio returns belong to a given
convex uncertainty set ΞΓ, we have

R(e)′txt ≥ γWt−1,∀e ∈ ΞΓ (4-13)

which is equivalent to

min
e∈ΞΓ

n∑
i=1

R(e)t,ixt,i ≥ γWt−1 (4-14)

Let us assume µt,i = R̂t,i and that gt,mi is an element of the lower (n ×
n) triangular matrix Gt. We arrive at the following nonlinear formulation of the
problem

max
x∈<n

n∑
i=1

R̂t,ixt,i

s.t.
n∑
i=1

R̂t,ixt,i + η min
e∈ΞΓ

n∑
i=1

n∑
m=1

gt,miemxt,i ≥ γWt−1

B(Rt−1,xt,xt−1, ct) ≥ ε2

(4-15)

As known from Bertsimas and Sim (2004), the nonlinear formulation of the
loss restriction

min
e∈ΞΓ

n∑
i=1

n∑
m=1

gt,miemxt,i

can be written as

DBD
PUC-Rio - Certificação Digital Nº 1012094/CA



4. PAPER 3: A ROBUST PORTFOLIO MODEL BASED ON BERTSIMAS &
SIM APPROACH 90

−max
e

n∑
m=1

∣∣∣ n∑
i=1

gt,mixt,i

∣∣∣fm
s.t.

0 ≤ fm ≤ 1 : zm,∀m
n∑

m=1

fm ≤ Γ : λ

(4-16)

where zm and λ are the dual variables associated with the problem. By duality,
(4-16) corresponds to the solution of the following optimization problem

−min
λ,zm

(λΓ +
n∑

m=1

zm)

s.t.

λ+ zm ≥ ym,∀m

−ym ≤
n∑
i=1

gt,mixt,i ≤ ym,∀m

zm, ym ≥ 0,∀m

λ ≥ 0

(4-17)

Substituting this result in (4-15) we can get the following optimization prob-
lem under the covariance-based adaptive robust loss
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max
x∈<n

n∑
i=1

R̂t,ixt,i

s.t.
n∑
i=1

R̂t,ixt,i − ηλΓ− η
n∑

m=1

zm ≥ γWt−1

λ+ zm ≥ ym,∀m

−ym ≤
n∑
i=1

gt,mixt,i ≤ ym,∀m

zm, ym ≥ 0,∀m

λ ≥ 0

B(Rt−1,xt,xt−1, ct) ≥ ε2

(4-18)

4.2.2 Budget Constraint

To describe the budget constraint in (4-18) we consider an adaptive hedge
fund11 decision problem, in which the fund manager may use advanced investment
strategies, such as leverage or short selling using linear financial derivatives (futures
contracts, for instance). We consider a wealth maximization problem in which the
objective function is a linear combination of expected returns over derivatives ex-
posure and cash equivalents positions.12 As a typical hedge fund, this specification
allows for exposures in derivatives (denoted by wt,i ∈ R, where i = 1, ..., n13)
as well as positions in cash equivalents (for simplicity, denoted by a single cash

11 We will consider that this investment strategy might be called loosely as a hedge fund model
since we allow for more flexible investment strategies compared to the prior case study.

12 Being an investment fund, we consider the portfolio manager maintains the fund liquidity in-
vested in cash equivalents. Since the fund invests in derivatives, we consider that the corresponding
margin value blocked is corrected at the DI spot rate, considering that the fund can use government
bonds as eligible collateral.

13 Here n is the number of available derivatives.
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equivalent xt,c ∈ R+). The hedge fund problem, ∀t is given by

max
x∈<n

[
R̂t,cxt,c +

n∑
i=1

R̂t,iwt,i

]
s.t.

n∑
i=1

R̂t,iwt,i − ηλΓ− η
n∑

m=1

zm ≥ γWt−1

λ+ zm ≥ ym,∀m

−ym ≤
n∑
i=1

gt,miwt,i ≤ ym,∀m

zm, ym ≥ 0,∀m

λ ≥ 0

xt,c = Wt−1 −
n∑
i=2

ci(u
+
i + u−i )

wt,i = wt−1,i(1 +Rt−1,i) + u+
i − u−i ,∀i

u+
i ≥ 0, u−i ≥ 0,∀i

(4-19)

Since the fund might trade derivatives and cash equivalents, we consider transaction
costs are paid using the fund cash equivalent and all exceeding resources at time t
are invested in cash equivalents.

4.3 Case Study

In this section we investigate the proposed model (4-19) in an out-of-sample
exercise considering a hedge fund strategy applied to the Brazilian financial market.
The manager may decide to invest (long or short) in some different asset classes,
represented by the following linear derivatives14, namely:

· U.S. Dollar Futures Contract (BRLUS fut);15

· Ibovespa Futures Contract (BVSP fut);

14 In this case study, either short selling or leverage is allowed. For Ibovespa Futures Contract and
U.S. Dollar Futures Contract we consider the maturity which was the most liquid for each day and
for the Brazilian one-day Interbank Deposit Futures Contract we consider the 1 year maturity.

15 Exchange rate of Brazilian Reais (BRL) per US Dollars for cash delivery, according to the
provisions of Resolution 3265 of 2005 of the National Monetary Council (CMN).
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· Gold Futures Contract (Gold fut);16

· Brazilian one-day Interbank Deposit Futures Contract (DI fut);17

We also consider the existence of a risk-free asset (cash equivalent), namely
the Brazilian interbank deposit rate (DI spot rate). The hedge fund manager may
decide whether to invest in any of the derivatives18 listed above or to just keep the
cash invested in the DI spot rate. Data was obtained from Cetip and Bloomberg
databases. We calculate discrete asset returns based on daily price observations
during the same sample period (as of April 5, 2000 up to May 31, 2013, comprising
3,257 observations). We implement a hedge fund optimization algorithm consid-
ering the existence of real transaction costs applied to Brazilian derivatives and a
management fee of 1% per annum, calculated on a daily basis over the back-tested
cumulative returns.19 The programming solver Xpress was used to run the opti-
mization problems.

Our objective is to compose a hedge fund portfolio with the highest daily
return subject to a controlled loss. To analyze the empirical results obtained by the
different specifications we will consider a metric of cumulative return (3-24) and a
metric based on a risk-adjusted return index (3-25).

Table 4.1 depicts the annualized values for average return and volatility as
well as tail loss measure (CV aRα(Rp,t)) and maximum exposures (for long and
short positions20) for all optimal portfolios with a limit daily loss γ set to -0.2% and

16 Gold in bars, cast by a refiner and kept in a depository institution, both accredited by
BM&FBovespa.

17 Interest rate effective up to the contract expiration date, defined as the capitalized daily Interbank
Deposit (DI) rates verified on the period between the trading day and the last trading day of the
contract. It is quoted as effective interest rate per year, based on 252 business days, to three decimal
places. In the following study we work with price numbers, as we converted the collected rates.

18 The resulting dynamic program does not suffer from the curse of dimensionality. As we spec-
ified our model as a linear optimization problem (with linear transaction costs) it is quite simple to
solve it for portfolios of multiple assets.

19 Transaction costs for derivatives are calculated as per BM&FBovespa methodology and broker-
age fees by trading volume and slippage costs. All execution cost incurs over the traded volume
at each period of time. As we consider that the fund might invest in derivatives, we consider that
the corresponding margin value blocked is corrected at the DI spot rate. To ensure the optimization
of the investors resources, BM&FBOVESPA corrects the margin value during the period that the
margin was blocked at a rate close to the DI spot rate (considering that investors can use Brazilian
government bonds as eligible collateral). The margin required is the minimum amount the partic-
ipant must maintain deposited at the clearinghouse to guarantee the settlement of the obligations
resulting from the transactions assigned to her. To replicate a typical Brazilian hedge fund strategy,
we consider a management fee of 1%per annum.

20 We let the model vary the exposure in derivatives in the range -100% up to +100% of the funds’
net asset value (nav). For the DI future which exhibits a lower volatility level, we let the model vary
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varying the structure parameter Γ and the scale factor η.

Tab. 4.1: Comparative table varying parameters η and Γ for γ = −0.2%.

BRLUS 

fut
BVSP fut Gold fut DI fut

BRLUS 

fut
BVSP fut Gold fut DI fut

Loss parameter (γγγγ) equals -0.2%

Empirical Robust Loss Control

16.1% 3.6% -0.4% 0.135 83% 23% 51% 400% -63% -20% -33% -400%

Parameterized Robust Loss Control ( η =1.0)

Γ=0 54.6% 51.2% -7.3% 0.024 100% 100% 100% 400% -100% -100% -100% -400%

Γ=0.5 57.2% 47.6% -7.3% 0.025 100% 100% 100% 400% -100% -100% -100% -400%

Γ=1.0 44.5% 35.3% -5.4% 0.027 100% 100% 100% 400% -100% -100% -100% -400%

Γ=1.5 34.1% 23.8% -3.6% 0.033 100% 100% 100% 400% -100% -100% -100% -400%

Γ=2.0 28.0% 16.0% -2.4% 0.042 100% 100% 100% 400% -100% -100% -100% -400%

Γ=2.5 26.3% 12.8% -1.9% 0.050 100% 100% 100% 400% -100% -100% -100% -400%

Γ=3.0 23.8% 11.8% -1.7% 0.049 100% 100% 99% 400% -98% -100% -100% -399%

Γ=3.5 23.8% 11.4% -1.7% 0.051 100% 100% 100% 400% -94% -100% -100% -400%

Γ=4.0 23.4% 11.3% -1.7% 0.050 100% 100% 99% 400% -93% -100% -100% -400%

Exposure in risky derivatives

Annualized 

Average 

Return %pa

Annualized 

Volatility 

%pa

CVaRα 

%pd
ICVaRα 

Maximum Long positions (%nav) Maximum Short positions (%nav)

Γ=4.0 23.4% 11.3% -1.7% 0.050 100% 100% 99% 400% -93% -100% -100% -400%

Parameterized Robust Loss Control ( η =2.0)

Γ=0 54.6% 51.2% -7.3% 0.024 100% 100% 100% 400% -100% -100% -100% -400%

Γ=0.5 44.5% 35.3% -5.4% 0.027 100% 100% 100% 400% -100% -100% -100% -400%

Γ=1.0 26.5% 14.5% -2.1% 0.044 100% 100% 100% 400% -100% -100% -100% -400%

Γ=1.5 21.9% 6.5% -0.8% 0.096 100% 100% 100% 400% -100% -100% -96% -400%

Γ=2.0 20.5% 4.2% -0.5% 0.160 100% 100% 100% 400% -100% -100% -28% -400%

Γ=2.5 19.9% 3.6% -0.4% 0.182 100% 100% 100% 400% -100% -100% -27% -400%

Γ=3.0 19.4% 3.5% -0.4% 0.180 97% 97% 98% 389% -96% -96% -26% -388%

Γ=3.5 19.6% 3.5% -0.4% 0.182 97% 96% 98% 393% -98% -98% -25% -391%

Γ=4.0 19.5% 3.6% -0.4% 0.182 97% 95% 98% 391% -97% -98% -25% -388%

Parameterized Robust Loss Control ( η =3.0)

Γ=0 54.3% 51.2% -7.3% 0.024 100% 100% 100% 400% -100% -100% -100% -400%

Γ=0.5 33.3% 23.4% -3.5% 0.021 100% 100% 100% 400% -100% -100% -100% -400%

Γ=1.0 21.7% 6.3% -0.8% 0.037 100% 100% 100% 400% -100% -86% -98% -400%

Γ=1.5 18.0% 2.8% -0.3% 0.080 100% 100% 100% 400% -84% -25% -21% -400%

Γ=2.0 17.0% 2.0% -0.2% 0.135 100% 100% 100% 400% -39% -25% -16% -400%

Γ=2.5 17.0% 1.8% -0.2% 0.158 100% 100% 100% 400% -31% -25% -16% -400%

Γ=3.0 16.7% 1.7% -0.2% 0.157 98% 98% 98% 392% -30% -24% -16% -389%

Γ=3.5 16.8% 1.7% -0.2% 0.158 97% 97% 99% 394% -30% -24% -16% -392%

Γ=4.0 16.8% 1.7% -0.2% 0.158 97% 97% 98% 394% -30% -24% -16% -391%

Comparing the optimal portfolios results21 one can notice that from both ex-
post risk measures (as of volatility and CV aRα(Rp,t) values), we can verify that
varying the scale factor η ∈ (1, 2, 3) can effectively control the risk assumed by

the exposure from -400% up to +400% of the funds’ nav.
21 We set the robust parameter B to 20 trading days.
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the strategy. As expected, when increasing the value of η (as long as Γ 6= 0) the
optimal portfolio exhibits a lower risk level. This is also verified by the difference
in magnitude between maximum exposures (long or short). Further, for all values
of η the model let the maximum short exposure be smaller or equal to the maximum
long exposure. This is in line with our intuition that short positions are riskier than
long ones.22 On the other hand, when we assume smaller values for η, varying
structure parameter Γ has minor effects in controlling the portfolio risk level (even
for greater values of Γ).

Furthermore we write in the first line of Table 4.1 the results found in Chapter
3 for the mixed signals model considering an empirical robust loss (for γ = −0.2%).
We will compare these previous results with the ones found in this Chapter. As one
can notice, for η = 1 we could not achieve optimal portfolios with the same risk
level as we found for the mixed signals model with empirical loss. For models with
η = 2 and Γ ≥ 2.5 and also for model η = 3 and Γ = 1.5 we could achieve
optimal portfolios with similar risk levels, both from volatility and CV aRα(Rp,t)

measures. Also, one can notice that for this latter loss specification we could obtain
optimal portfolios with a higher average return and also with higher values for the
risk-adjusted return index named ICV aRα(Rp,t).

In Figure 4.1 we plot the risk-reward relationship among the optimal portfo-
lios varying the scale factor η and maintaining Γ = 2.0. Considering the existence
of a risk-free asset (as the DI spot rate, for instance) one can notice that the optimal
portfolios, with different values for η, exhibit higher Sharpe ratios when compared
to buy-and-hold risky strategies.

22 The outcome of a short sale is basically the opposite of a regular buy transaction, but the me-
chanics behind a short sale result in some unique risks. In a short position, losses can be infinite
while the upside is limited. When the price moves against the trade, the trade exposure in fact
increases in value what enhances the assumed risk.
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Fig. 4.1: Risk-return relationship varying the scale factor η forγ = −0.2%.
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Figure 4.2 depicts the cumulative performance for those selected models (em-
pirical loss and covariance-based loss (adapted from Bertsimas and Sim (2004) ap-
proach) with η = 2, Γ = 2.5 and γ = −0.2%) against the ANBIMA’s Hedge Fund
Index - IHFA.23

23 A hedge fund index based on the evolution of a portfolio composed of selected funds that rep-
resent the Brazilian hedge funds sector calculated by ANBIMA - Brazilian Financial and Capital
Markets Association.
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Fig. 4.2: Cumulative performance for the mixed signal models with empirical loss and Bert-
simas and Sim (2004) adapted loss with η = 2,Γ = 2.5 and γ = −0.2% against
the IHFA.
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Both optimal portfolios present superior cumulative performances when com-
pared to the IHFA. To check whether this evidence is valid for the different market
periods over our sample, we consider the investor hold this strategy for different
time intervals and plot in Figure 4.3 trailing returns for several time intervals. In
this graph we plot MSM with Bertsimas and Sim (2004) adapted loss trailing re-
turns against IHFA trailing returns. One can notice that the model exhibits a higher
frequency of positive returns with a greater magnitude. Furthermore, this behavior
is even more pronounced with an increase in the time interval considered.
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Fig. 4.3: Trailing returns for the mixed signals model based on Bertsimas and Sim (2004)
approach, considering several time intervals (6 months, 1 year, 2 years, 3 years)
and γ = −0.2%.
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4.4 Concluding Remarks

In this paper we applied the robust optimization methodology of Bertsimas
and Sim (2004) and presented an alternative correlated model, considering the ro-
bustness in two levels. We set the objective function of the portfolio problem as an
adaptive mixed signals strategy and discuss an application to a hedge fund problem
to investigate the feasibility of the solution. The results of the investigation reported
in this paper show that robust models yield the most robust and cost effective port-
folios. Evidence suggests that it is possible to obtain higher returns when compared
to benchmark strategies (buy-and-hold) considering both dynamic correlations and
transaction costs. Furthermore, we illustrate interesting results concerning the two-
level robustness. As expected, uncertainty sets with a larger range tend to result in
higher costs, but increased robustness. And the scale factor η presented a more pro-
nounced effect in the optimal portfolios generated when compared to the structure
parameter Γ.
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5
Conclusion

This thesis makes some contributions to the area of asset allocation optimiza-
tion models under uncertainty. We have investigated two standard methods exten-
sively adopted in the asset allocation literature to deal with estimation errors: the
Bayesian approach and robust estimation methods.

In the first essay of this thesis presented in Chapter 2 we adopted the Bayesian
approach and we address dynamic optimization trading strategies using the BL
framework. Our challenge was to present how observed price-earnings ratio and
returns can be used to determine a priori estimation of asset expected returns and
how this can be integrated into the Black-Litterman model, regarding investors with
different risk profiles.

In the following two essays presented in Chapters 3 and 4 respectively we ap-
plied robust optimization techniques to solve portfolio problems under uncertainty.
We provided two different methodologies to construct uncertainty sets within the
framework of robust optimization for linear optimization problems with uncertain
parameters. The provided approach considered that optimal portfolio losses were
modeled using a robust adaptive function. Its potential loss was limited by the
worst-case scenario inside predefined dynamic uncertainty sets. More specifically,
in the second essay we modeled uncertainty as polyhedral dynamic sets described
by a list of its vertices, which are set as past assets returns obtained over mov-
ing windows with a length of J-days. This was an empirical method to construct
an uncertainty set as its information set is limited to past returns. In the third es-
say we modeled uncertainty as polyhedral dynamic sets described by a historical
covariance structure of returns calculated over moving windows. Under this latter
specification, no more than a predetermined number Γ of assets could change simul-
taneously from a given dynamic estimated nominal value. This method was based
on the approach introduced by Bertsimas and Sim (2004) and it was proved to be
efficient to adjust the robustness of the problem against the level of the conservatism
of the solution.

While the literature on robust portfolio optimization from operations research
is plentiful and enlightening, there is in general a lack of empirical studies on how
the methods work with real world applications (as with constraints on positions,
leverage, etc). As more studies focus on the empirical aspects, we believe it will
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be a matter of time before some robust techniques reviewed here will become as
indispensable as the classical framework to practitioners.

The essays, therefore, in addition to uncovering new evidence and provid-
ing new insight into specific asset allocation issues within the Brazilian financial
market, put forward an alternative framework for researchers and specifically prac-
titioners to assess investment outcomes. We hope the key findings that emerge from
this thesis would be informative to the existing literature.
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6
Appendix

6.1 Chapter 2

6.1.1 The Proof of BL Formula for the Posterior Distribution of
the Expected Returns

To arrive at the formulation for the posterior expected returns and its associ-
ated variance, we need to consider Bayes theorem. In the notation we have previ-
ously defined, Bayes theorem states that

f(µ|π) =
f(π|µ)f(µ)

f(π)
(6-1)

where the terms above have the following interpretation:
- f(Pµ) is the prior pdf that expresses the (prior) views of the investor,
- f(π) represents the marginal pdf of equilibrium returns (which disappears in the
constant of integration),
- f(π|µ) is the conditional pdf of the data equilibrium return.

And we can write the pdfs as

f(Pµ) =
1√

2πk|Ω|
e−

1
2

(Pµ−q)′Ω−1(Pµ−q)

f(π|µ) =
1√

2πn|τΣ|
e−

1
2

(π−µ)′τΣ−1(π−µ)
(6-2)

Considering that the numerator of formula (6-1) is proportional to

∝ e−
1
2

(Pµ−q)′Ω−1(Pµ−q)− 1
2

(π−µ)′τΣ−1(π−µ) (6-3)

Expanding the terms above, excluding the −1
2

and considering that both Σ

and Ω are symmetric matrices, re-arranging we get

∝ µ′
[
P ′Ω−1P + (τΣ−1)

]
µ− 2

[
q′Ω−1P + π(τΣ−1)

]
µ+

[
q′Ω−1q + π′(τΣ−1)π

]
(6-4)
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From now on let us assume that

M1 =
[
P ′Ω−1P + (τΣ−1)

]
M ′

2 =
[
q′Ω−1P + π(τΣ−1)

]
M3 =

[
q′Ω−1q + π′(τΣ−1)π

] (6-5)

And we can write the expression (6-4) as

∝ µ′M1µ− 2M ′
2µ+M3 (6-6)

Given that I = M−1
1 M1 and M1 = M ′

1 we can re-write

∝ (M1µ)′M−1
1 M1µ− 2M ′

2M
−1
1 M1µ+M3

∝ (M1µ−M2)′M−1
1 (M1µ−M2) + [M3 −M ′

2M
−1
1 M2]

∝ (µ−M−1
1 M2)′M1(µ−M−1

1 M2) + [M3 −M ′
2M

−1
1 M2]

(6-7)

Since the last term in brackets is independent of Pµ, it disappears in the constant
of integration, and we have

f(µ|π) ∝ e−
1
2

[(µ−M−1
1 M2)′M1(µ−M−1

1 M2)] (6-8)

Substituting the values of equations (6-7) we thus have the following distribution
for µ|π

µ|π ∼ N
([

(τΣ−1) + P ′Ω−1P
]−1 [

(τΣ)−1π + P ′Ω−1q
]
,
[
(τΣ−1) + P ′Ω−1P

]−1
)

(6-9)

6.2 Chapters 3 and 4

6.2.1 The Mixed Signals Model to Predict Future Returns - R̂t,i

We assume a mixed signals model for the objective function that could be
flexible enough to dynamically select the signal that performs better, considering
out-of-sample analysis. We understand that technical indicators can offer a different
perspective from which to analyze the price action as they can provide information
on the strength and direction of the asset price and/or return. We decided to con-
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struct some indicators that complement each other, mixing trend following (lagging
indicators), momentum oscillators (leading indicators) and volatility signals. We
will then compare the obtained results with a simple random walk model to predict
future returns.

Trend followers indicators are based on the analysis of market prices or re-
turns rather than fundamental figures of the companies. This trading strategy tries
to take advantage of perceived trends betting that the trend will persist for a period
of time. And it is intended to be capable of making profits from both the ups and
downs movements in the asset price. Trend follower indicators give the signal only
when a trend is already underway and as a consequence the investor always miss
a bit of the profit. Momentum oscillators, on the other hand, present buy and sell
prompts earlier in time, sometimes even before the trend has started. The investor
in this case may well be going against the short term trend but the theory states
that it is possible to capture all the benefit of a subsequent change of direction.
Furthermore we decided to implement signals based on volatility as we understand
that volatility indicators can help investors understand market cycles and improve
price prediction.1 We decided to use those indicators and let our learning algorithm
choose dynamically which combination is better adherent to the data.

The first two signals are described as short term and long term simple moving
averages2 as

Ŝig1,t,i =
1

KST

KST∑
d=1

Rt−d,i,∀i, t

Ŝig2,t,i =
1

KLT

KLT∑
d=1

Rt−d,i,∀i, t

(6-10)

where KST stands for the short term period and KLT stands for the long term pe-
riod. Those are parameters estimated by an out-of-sample cumulative performance
analysis.

However, simple moving average can be disproportionately influenced by old
data points and the strength of the dependence among asset returns usually de-

1 Price movement is usually easier to predict over time than price direction. In fact, volatility
signals usually indicates that a movement is about to happen.

2 A moving average is an indicator that calculates an average price (return) of an asset over a
specified number of periods. It filters out random noise and offers a smoother perspective of the
price action and helps to define the current direction with a lag. It can be seen as a kind of finite
impulse response filter as it smooth out short term fluctuations and highlight longer term trends or
cycles.
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creases as the separation of observations in time increases. We propose that greater
weight should be associated to more recent observations. We thus decided to con-
sider also signals extracted from an exponential moving average, which is a type of
infinite impulse response filter that applies weighting factors which decrease expo-
nentially in time. A formulation for signals 3 and 4, considering an exponentially
weighted function is given by

Ŝig3,t,i =

KST∑
d=1

αdRt−d,i,∀i, t

where

αd =
e
−d

KST∑KST

d=1 e
−d

KST

, ∀d = 1, ..., KST

(6-11)

and

Ŝig4,t,i =

KLT∑
d=1

αdRt−d,i,∀i, t

where

αd =
e
−d

KLT∑KLT

d=1 e
−d

KLT

, ∀d = 1, ..., KLT

(6-12)

And also, to reflect some leading movement in returns, we decided to con-
struct signal 53 that is given by

Ŝig5,t,i =
R̄+
t−d,i

R̄−t−d,i
− 1 (6-13)

3 Momentum oscillators usually measure the speed and change of price movements. The most
common known indicators are Relative Strength Index (RSI) and moving average convergence di-
vergence (MACD). The first technical indicator was developed by J. Welles Wilder in the 70s as a
momentum oscillator defined to oscillate between zero and 100 and is considered overbought when
above 70 and oversold when below 30. The latter was developed by Gerald Appel in the late 70s,
and as although very simple it seems to be a very effective momentum indicator. The MACD turns
two trend following indicators into a momentum oscillator by subtracting the longer moving average
from the shorter moving average. It fluctuates above and below the zero line as the moving averages
converge, cross and diverge.
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where R̄+ corresponds to the average of all positive returns in the time periodKmom

and R̄− corresponds to the average of all negative returns in the time period Kmom.4

Besides those signals, we are also interested in volatility indicators. There-
upon we added a new signal specification that considers past returns mean and
volatility to describe future returns. Signals 6 and 7 consider bands around the
simple moving average as

Ŝig6,t,i =

{
µ̂t,i − % ∗ σ̂t,i if µ̂t,i ≤ 0

µ̂t,i + % ∗ σ̂t,i if µ̂t,i > 0

where

µ̂t,i =
1

KST

KST∑
d=1

Rt−d,i,

σ̂t,i =
[ 1

KST

KST∑
d=1

[
Rt−d,i − µ̂t,i

]2]1/2

,∀i

(6-14)

and % is the number of standard deviations above the means, defined for identifying
extreme changes.5 We define Ŝig7,t,i likewise replacing KST for KLT .

Finally, to construct signals 8 and 9 we implement the same evaluation as for
signals 6 and 7, but in this case, the mean is considered as the exponential moving
average formula

Ŝig8,t,i =

{
µ̂t,i − % ∗ σ̂t,i if µ̂t,i ≤ 0

µ̂t,i + % ∗ σ̂t,i if µ̂t,i > 0

where

µ̂t,i =

KST∑
d=1

e
−d

KST∑KST

d=1 e
−d

KST

Rt−d,i

σ̂t,i =
[ 1

KST

KST∑
d=1

[
Rt−d,i − µ̂t,i

]2]1/2

,∀i

(6-15)

4 For the RSI calculation, Wilder suggest in his book (see Wilder (1978)) the default value of
14 days. As we are well aware of the over-fitting problem of models that require a huge number
of parameters and as this signal is a momentum oscillator as well, we propose to assume the same
value for Kmom.

5 In our case study, we set it to two standard deviations above the means. The empirical rule states
that about 95.45% of the values lie within 2 standard deviations of the mean in a Gaussian distri-
bution. This approach has been commonly used in recent quantitative trading studies and generally
acknowledged as a good method for a significant movement identification cut-off point.

DBD
PUC-Rio - Certificação Digital Nº 1012094/CA



APPENDIX 115

We define Ŝig9,t,i likewise, by replacing KST for KLT .
To evaluate the performance of the proposed mixed signal model in generating

consistent signals to predict future returns we construct Figure 6.1 which depicts
a scatter plot of random walk absolute prediction error for the optimized mixed
signals model absolute prediction error. As we can see, our proposed model seems
to produce smaller errors when compared to the simple random walk model for both
risky assets BVSP fut and BRLUS fut.6

Fig. 6.1: Returns estimated prediction error 1-step ahead (random walk model × mixed
signals model)
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We also plot in Table 6.1 the regression statistics for the proposed mixed sig-
nal model to predict future returns 1-step ahead in the RA-AAP model.

6 We choose to plot the mixed signals model considering KST = 50,KST = 100.
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Tab. 6.1: Mixed signal model statistics

MSM Statistics

Coeff t- Stat P-Value R-SquareCoeff t- Stat P-Value R-Square

DI Spot rate 1.0936     326.85 0.00% 97.15%

BRLUS currrency 0.9728     16.60 0.00% 8.09%

BVSP index 0.9097     13.65 0.00% 5.61%

6.2.2 Function Specification for Transaction Costs

Under our formulation, we assume the following model for the total transac-
tion costs, where transaction costs φi are defined, by assumption, as convex on the
financial volume of each asset ui as

φi(ui) =

{
c+
i ui if ui ≥ 0

−c−i ui if ui ≤ 0
(6-16)

where c+
i and c−i are the transaction costs (in percentage %) associated to an order

(buy or sell) of a given asset i.7

We will introduce the following notation to express transaction costs in our
optimization problem. Let us consider new variables u+, u− ∈ <n. We can express
the total transaction executed on asset i as

ui = u+
i − u−i ,

u+
i ≥ 0, u−i ≥ 0

(6-17)

And the transaction cost function φi can be represented by

φi = c+
i u

+
i + c−i u

−
i (6-18)

7 In practice, transaction costs are not a convex function of the financial trading volume. If we
disregard the slippage cost, they are closer to concave functions (we have for instance the charge of
a flat fee for small transaction volumes, but above certain transacted amount, the fee is a decreasing
function of the financial volume). However, depending on the market impact and liquidity, this
concave effect may be counteracted. Therefore, we decided to keep our cost function linear and be
more conservative in our analysis.
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6.2.2.1 Realistic Transaction Costs

In all our case studies we considered the BMF&Bovespa, brokerage and slip-
page costs. We calculated the BMF&Bovespa costs considering a R$50mm nav
fund. Those costs refer to trading, settlement, registration, custody, and clearing:

• Exchange fee refers to the trading service

• Settlement fee to cover expenses incurred by the Clearinghouse

• Permanence fee to keep track of positions

• Registration fee refers to the registration service by the Clearing

Furthermore, we consider brokerage fees by trading volume with a devolution of
99% for BRLUS contracts and 95% otherwise. To calculate slippage costs we esti-
mate future volatility (3-month period) using an EWMA model for each asset class
and evaluate the slippage cost as a function of this estimated volatility. Figure 6.2
depicts those transaction costs % over financial traded volume along time.

Fig. 6.2: Transaction costs evolution for some asset classes.
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